Magnetic fields in the formation of massive stars: The SMA view

Josep Miquel Girart
Institut de Ciències de l’Espai

Q. Zhang (CfA)
K. Qiu (Nanjing Univ.)
P. Frau (OAN, CAB-CSIC)
M.T. Beltran (Arcetri)

SOUL OF HIGH-MASS STAR FORMATION
Puerto Varas, Chile
March 15–20, 2015
1. Introduction.
2. Previous SMA results
3. SMA Legacy Survey. The sample and Individual targets
4. SMA Legacy Survey. Statistical results
5. SMA and CSO Statistics
6. Conclusions
Magnetic fields: why should we care?

- Magnetic braking: angular momentum removal,
- Control accretion disk formation and evolution, launch of bipolar outflow
- Slow and regulate collapse of the dense molecular cores
- Observations show magnetic fields have strength from $\sim 10\mu G$ in diffuse atomic/molecular gas, $\sim 0.5-10$ mG in dense molecular cores, up to ~ 100 mG at few hundreds AU near low/high mass protostars
Previous observations of magnetic fields at ~0.1 pc scale:

\[\text{G31.41+0.31} \]

- \(\text{D=7.9kpc; L\approx3 \times 10^5 \, L_\odot; M\approx500M_\odot} \)
- Magnetic field: twisted hourglass
- Supercritical magnetic core (magnetic energy > turbulent energy)
- Inverse P-Cygni profile: infall
- \(\dot{M}_\text{acc} = [3\times10^{-3} - 3\times10^{-2}] \, M_\odot \, \text{yr}^{-1} \)
- Molecular gas: rotation along major axis
- Evidence of magnetic braking

Other examples of well organized B: W51e2/e8 (Lai et al. 2001; Tang et al. 2009); G35.2-0.74 N (Qiu et al. 2013)
Previous observations of magnetic fields at ~0.1 pc scale:
G31.41+0.31

- D=7.9kpc; L≈3 10^5 L☉; M≈500M☉
- Magnetic field: twisted hourglass
- Supercritical magnetic core (magnetic energy > turbulent energy)
- Inverse P-Cygni profile: infall
- \(\dot{M}_{\text{acc}} = [3 \times 10^{-3} - 3 \times 10^{-2}] \ M_\odot \ \text{yr}^{-1} \)
- Molecular gas: rotation along major axis
- Evidence of magnetic braking

Other examples of well organized B: W51e2/e8 (Lai et al. 2001; Tang et al. 2009); G35.2-0.74 N (Qiu et al. 2013)
Previous observations of magnetic fields at ~0.1 pc scale: **NGC 7538 IRS 1**

- D=2.65 kpc; L\(\approx\) 10\(^4\) L\(_\odot\); M\(\approx\)200M\(_\odot\)
- IRS1, UC HII region of 500 AU
- Filamentary structure: central bar formed with gravitationally bound cores (15 –37 M\(_\odot\)) and a “spiral arm” formed gravitationally unbound cores (3 – 12 M\(_\odot\))
- **Central bar** is forming massive stars
- **Spiral arm** is expanding
- Magnetic field: twisted following spiral arm
- The kinetic energy, linear momentum, and dynamic age of the spiral arm are compatible with the values of the bipolar CO outflow
- **Spiral arm** formed/enhanced in a snowplow fashion by the outflow

NGC7538IRS1 refs: Kawabe et al. 1992, Klaassen et al. 2009; Wright et al. 2014; Goddi et al. 2015

Other examples “disorganized” B: G5.89-0.39 (Tang et al. 2009)
Previous observations of magnetic fields at ~0.1 pc scale:
NGC 7538 IRS 1

- D=2.65 kpc; L ≈ 10^4 L☉; M≈200M☉
- IRS1, UC HII region of 500 AU
- Filamentary structure: **central bar** formed with gravitationally bound cores (15 – 37 M☉) and a **“spiral arm”** formed gravitationally unbound cores (3 – 12 M☉)
- **Central bar** is forming massive stars
- **Spiral arm** is expanding
- Magnetic field: twisted following spiral arm
- The kinetic energy, linear momentum, and dynamic age of the spiral arm are compatible with the values of the bipolar CO outflow
- **Spiral arm** formed/enhanced in a snowplow fashion by the outflow

NGC7538IRS1 refs: Kawabe et al. 1992, Klaassen et al. 2009; Wright et al. 2014; Goddi et al. 2015

Other examples “disorganized” B: G5.89-0.39 (Tang et al. 2009)
SMA Polarization Legacy project: Observing magnetic fields in a sample of massive star forming regions

Method:
- Image polarization at 880 μm with the SMA in
 - Beam of ≈1″ (subcompact, compact and extended configurations)
 - 1σ rms noise of 2 mJy beam⁻¹.
- Frequency tuning to observe molecular tracers of
 - the core’s kinematics (H¹³CO⁺ 4-3, SO lines),
 - hot core lines (CH₃OCH₃, CH₃CH₂CN)
 - outflow activity (CO 3-2, SiO 8-7)

Sample:
- 21 massive star forming regions from mm surveys and polarization with SCUBA
- Continuum flux limit of 0.5 Jy/beam (interfero.)
- Most of sources in a relatively nearby distances (<2 kpc)
- Earliest stages of star formation: avoid HII regions
SMA pol survey in massive cores: G240.31+0.07

D=5.3 kpc; $L \approx 3 \times 10^4 L_\odot$; $M \approx 125 M_\odot$

A well aligned case: bipolar outflow, magnetic field and rotation axes
Evidence of magnetic braking

G240.31+0.07 refs: Chen et al. 2007; Trinidad 2011,
SMA pol survey in massive cores: G240.31+0.07

D=5.3 kpc; L ≈ 3 × 10^4 L ☉; M ≈ 125 M ☉

A well aligned case: bipolar outflow, magnetic field and rotation axes
Evidence of magnetic braking

v_{LSR} (km/s)
SMA pol survey in massive cores: DR21(OH)

D=1.6 kpc; L ≈ 2 \times 10^4 \, L_\odot; M \approx 300 \, M_\odot. High level of fragmentation

No apparent aligned between bipolar outflow, magnetic field and rotation axes

Angular momentum dominates over magnetic field, causing a complex toroidal B morphology

DR21(OH) refs: Crutcher 1999; Lai et al. 2003; Hennemann et al. 2012,
SMA pol survey in massive cores: Images

SMA pol survey in massive cores: Statistical results: $B_{\text{core}} \ versus \ B_{\text{clump}}$

Bimodal distribution
- 60% SMA pol $\Delta \theta < 40^\circ$
- Smaller group of pol $\Delta \theta \sim 80-90^\circ$
- Analysis suggests a $||$ to \perp ratio of 5:3
SMA pol survey in massive cores: Statistical results: B_{core} vs $\text{Major Axis}_{\text{core}}$

Bimodal distribution

- 60% SMA pol $\Delta \theta < 40^\circ$
- Smaller group of pol $\Delta \theta \sim 90^\circ$
- Analysis suggests a \parallel to \perp ratio of 5:3
SMA pol survey in massive cores:
Statistical results: $B_{\text{core}} \ vs \ \text{Outflow direction}$

No apparent correlation

Similar result found for low-mass star forming cores: Hull et al. 2013
Statistical results from pol SMA + CSO obs

Analysis of the magnetic field direction and the dust emission gradient shows that:

- Cores with magnetic fields along the minor axis of the cores, appear to have slowed collapse
- Other cores (B field along major axis, other configuration) should show a faster collapse (close to free-fall collapse)
Conclusions

❖ In general magnetic fields appear to show a uniform pattern at core scale
❖ Magnetic fields at core scale show a bimodal distribution \textit{wrt} to the larger scale direction and \textit{wrt} to the core’s major axis
❖ \textbf{Bimodal distribution: why? Can simulations reproduce qualitatively the results from the SMA survey?}
❖ Outflow direction is not correlated with core’s magnetic field
❖ Evolved regions (i.e., with UC HII regions) show a more chaotic B field distribution: energetically it is overwhelmed by stellar feedback

Thanks for your attention!