Magnetic fields in the formation of massive stars: The SMA view

Josep Miquel Girart *Institut de Ciències de l'Espai*

Q. Zhang (CfA) K. Qiu (Nanjing Univ,) P. Frau (OAN, CAB-CSIC) Y.-W. Tang, P. Koch, H.Y. Liu, R. Rao (ASIAA) M.T. Beltran (Arcetri)

. . . .

Puerto Varas, Chile March 15–20, 2015

Content

- 1. Introduction.
- 2. Previous SMA results
- 3. SMA Legacy Survey. The sample and Individual targets
- 4. SMA Legacy Survey. Statistical results
- 5. SMA and CSO Statistics
- 6. Conclussions

Magnetic fields: why should we care?

- Magnetic braking: angular momentum removal,
- Control accretion disk formation and evolution, launch of bipolar outflow
- Slow and regulate collapse of the dense molecular cores
- Observations show magnetic fields have strength from ~10µG in diffuse atomic/molecular gas, ~0.5-10 mG in dense molecular cores, up to ~100 mG at few hundreds AU near low/ high mass protostars

Previous observations of magnetic fields at ~ 0.1 pc scale: G31.41+0.31

- * D=7.9kpc; L \approx 3 10⁵ L $_{\circ}$; M \approx 500M $_{\circ}$
- Magnetic field: twisted hourglass
- Supercritical magnetic core (magnetic energy > turbulent energy)
- Inverse P-Cygni profile: infall
- * $\dot{M}_{acc} = [3 \times 10^{-3} 3 \times 10^{-2}] M_{\odot} yr^{-1}$
- * Molecular gas: rotation along major axis
- Evidence of magnetic braking

G31 refs: Beltran et al. 2004, Osorio et al. 2004; Cesaroni et al. 2011; Mayen-Gijon et al. 2014

Other examples of well organized B: W51e2/e8 (*Lai et al. 2001; Tang et al. 2009*); G35.2-0.74 N (*Qiu et al. 2013*)

Previous observations of magnetic fields at ~ 0.1 pc scale: G31.41+0.31

- ◆ D=7.9kpc; L≈3 10^5 L $_{\odot}$; M≈500M $_{\odot}$
- Magnetic field: twisted hourglass
- Supercritical magnetic core (magnetic energy > turbulent energy)
- Inverse P-Cygni profile: infall
- * $\dot{M}_{acc} = [3 \times 10^{-3} 3 \times 10^{-2}] M_{\odot} yr^{-1}$
- Molecular gas: rotation along major axis
- Evidence of magnetic braking

G31 refs: Beltran et al. 2004, Osorio et al. 2004; Cesaroni et al. 2011; Mayen-Gijon et al. 2014

Other examples of well organized B: W51e2/e8 (*Lai et al. 2001; Tang et al. 2009*); G35.2-0.74 N (*Qiu et al. 2013*)

Previous observations of magnetic fields at ~0.1 pc scale: NGC 7538 IRS 1

- * D=2.65 kpc; L $\approx 10^4$ L $_{\odot}$; M ≈ 200 M $_{\odot}$
- * IRS1, UC HII region of 500 AU
- ★ Filamentary structure: **central bar** formed with gravitationally bound cores ($15 37 \text{ M} \circ$) and a "**spiral arm**" formed gravitationally unbound cores ($3 12 \text{ M} \circ$)
- * **Central bar** is forming massive stars
- * **Spiral arm** is expanding
- * Magnetic field: twisted following spiral arm
- The kinetic energy, linear momentum, and dynamic age of the spiral arm are compatible with the values of the bipolar CO outflow
- Spiral arm formed/enhanced in a snowplow fashion by the outflow

NGC7538IRS1 refs: Kawabe et al. 1992, Klaassen et al. 2009; Wright et al. 2014; Goddi et al. 2015

Other examples "disorganized" B: G5.89-0.39 (*Tang et al. 2009*)

Previous observations of magnetic fields at ~ 0.1 pc scale: NGC 7538 IRS 1

- * D=2.65 kpc; L $\approx 10^4$ L $_{\odot}$; M ≈ 200 M $_{\odot}$
- * IRS1, UC HII region of 500 AU
- * Filamentary structure: **central bar** formed with gravitationally bound cores ($15 37 \text{ M} \circ$) and a "**spiral arm**" formed gravitationally unbound cores ($3 12 \text{ M} \circ$)
- * **Central bar** is forming massive stars
- * **Spiral arm** is expanding
- * Magnetic field: twisted following spiral arm
- The kinetic energy, linear momentum, and dynamic age of the spiral arm are compatible with the values of the bipolar CO outflow
- Spiral arm formed/enhanced in a snowplow fashion by the outflow

NGC7538IRS1 refs: Kawabe et al. 1992, Klaassen et al. 2009; Wright et al. 2014; Goddi et al. 2015

Other examples "disorganized" B: G5.89-0.39 (*Tang et al.* 2009)

SMA Polarization Legacy project: Observing magnetic fields in a sample of massive star forming regions

Method:

- $\ast\,$ Image polarization at 880 μm with the SMA in
 - A. Beam of $\approx 1''$ (subcompact, compact and extended configurations)
 - B. 1σ rms noise of 2 mJy beam⁻¹.
- * Frequency tuning to observe molecular tracers of
 - C. the core's kinematics $(H^{13}CO^+ 4-3, SO \text{ lines}),$
 - D. hot core lines (CH₃OCH₃, CH₃CH₂CN)
 - E. outflow activity (CO 3-2, SiO 8-7)

Sample:

- * 21 massive star forming regions from mm surveys and polarization with SCUBA
- * Continuum flux limit of 0.5 Jy/beam (interfero.)
- Most of sources in a relatively nearby distances (<2 kpc)
- Earliest stages of star formation: avoid HII regions

SMA pol survey in massive cores: G240.31+0.07

Qiu et al. 2009, ApJ, 696, 66 and 2014, ApJ, 794, L18

D=5.3 kpc; L≈ 3 10⁴ L ∘ ; M≈125 M ∘ A well aligned case: bipolar outflow, magnetic field and rotation axes Evidence of magnetic braking

G240.31+0.07 refs: Chen et al. 2007; Trinidad 2011,

SMA pol survey in massive cores: G240.31+0.07

Qiu et al. 2009, ApJ, 696, 66 and 2014, ApJ, 794, L18

SMA pol survey in massive cores: DR21(OH)

Girart et al. 2013, ApJ, 792, 116

D=1.6 kpc; L \approx 2 10⁴ L $_{\odot}$; M \approx 300 M $_{\odot}$. High level of fragmentation No apparent aligned between bipolar outflow, magnetic field and rotation axes Angular momentum dominates over magnetic field, causing a complex toroidal B morphology

DR21(OH) refs: Crutcher 1999; Lai et al. 2003; Hennemann et al. 2012,

SMA pol survey in massive cores: Images

SMA pol survey in massive cores: Statistical results: $B_{core} vs B_{clump}$

Bimodal distribution

- 60% SMA pol $\Delta\theta < 40^{\circ}$
- Smaller group of pol $\Delta\theta$ ~80-90°
- Analysis suggests a || to \perp ratio of 5:3

SMA pol survey in massive cores: Statistical results: B_{core} vs Major Axis_{core}

Zhang et al. 2014, ApJ, 792, 116

Bimodal distribution

- 60% SMA pol $\Delta\theta < 40^{\circ}$
- Smaller group of pol $\Delta \theta \sim 90^{\circ}$
- Analysis suggests a || to \perp ratio of 5:3

SMA pol survey in massive cores: Statistical results: B_{core} vs Outflow direction

Zhang et al. 2014, ApJ, 792, 116

No apparent correlation

Similar result found for low-mass star forming cores: Hull et al. 2013

Statistical results from pol SMA + CSO obs

Koch et al. 2014, ApJ, 797, 99

Analysis of the magnetic field direction and the dust emission gradient shows that:

- Cores with magnetic fields along the minor axis of the cores, appear to have slowed collapse
- Other cores (B field along major axis, other configuration) should show a faster collapse (close to free-fall collapse)

Conclussions

- * In general magnetic fields appear to show a uniform pattern at core scale
- * Magnetic fields at core scale show a bimodal distribution *wrt* to the larger scale direction and *wrt* to the core's major axis
- Simodal distribution: why? Can simulations reproduce qualitatively the results from the SMA survey?
- Outflow direction is not correlated with core's magnetic field
- * Evolved regions (i.e., with UC HII regions) show a more chaotic B field distribution: energetically it is overwhelmed by stellar feedback

Thanks for your attention!

Puerto Varas, Chile March 15–20, 2015