ANNA ROSEN (UCSC) PRESENTS (2-(S),13-144848:818:83-148831) WHERE IS THE **MISSING STELLAR** WIND ENERGY FROM MASSIVE **STAR CLUSTERS?**

STARRING 30 DORADUS CARINA NEBULA NGC 3603 M17

Produced by Laura Lopez (MIT) Mark Krumholz (UCSC) Enrico Ramirez-Ruiz (UCSC) NSR

SOUL OF HIGH MASS STAR FORMATION, PUERTO VARAS, CHILE; MARCH 17, 2015

Stellar feedback is one of the largest uncertainties in star and galaxy formation.

30 Doradus in the LMC

Chandra/Spitzer/MCELS Hα (credit: L. Townsley)

Hot gas (X-rays) Cooler gas/Dust (Hα/Infrared)

X-ray observations of HII regions suggest that the shockheated gas is not dynamically important (Dunne+03, Harper-Clark & Murray+09, Lopez+11)

Lopez+2011

 $\frac{L_{\rm w} t_{\rm cl}}{V} \gg \frac{3}{2} n k_{\rm B} T_{\rm X}$

...so where's the missing energy?

- Our model and HII region requirements
- Description of how we account for the missing energy
- Our results and how they affect our understanding for stellar winds as an important feedback mechanism in star formation

Our Model

Castor+1975, Weaver+1977

(1) Require spectral typing of massive stars in HII region to estimate total L_w

Our Model

Castor+1975, Weaver+1977

(2) Require X-ray observations to characterize the properties of the hot gas

(3) Require radio observations to determine the HII region radius and shell expansion rate

Our HII Region Sample

(NASA)

Name	D(kpc)	$R_{\rm sh}({\rm pc})$	$v_{\rm sh}(\rm kms^{-1})$	$t_{\rm cl}({\rm Myr})$	$\log L_{\rm bol} (L_{\bigodot})$	$L_{\rm w} (10^{37}{\rm ergs^{-1}})$	$L_{\rm x} (10^{35} {\rm erg s^{-1}})$	$T_{\rm X} (10^6 {\rm K})$
30 Doradus	50	100	25	2	8.4	224	45.0	7.4
Carina	2.3	20	20	3	7.23	35.0	1.71	4.5 ^a
NGC 3603	7.0	21	20	1	-	62.0	2.6	6.2^{a}
M17	2.1	5.8	25	1	6.58	1	0.2	5.3 ^a

^aTemperatures shown are surface-brightness-weighted values from Townsley et al. (2011c) .

30 Doradus: Lopez+2011, Doran+2013, Lopez+2013; Carina: Smith 2000, Smith 2006, Smith & Brooks 2007, Townsley+2011c; NGC 3603: Balick+1980, Crowther & Dessart 1998, Townsley+2011c; M17: Clayton+1985, Dunne+2003, Townsley+2003, Hoffmeister+2008, Townsley+2011c

L_{mech}: Mechanical work on the dense shell

L_{cond}*: Laminar Thermal Conduction of the Hot Electrons

(* conservative estimate)

L_{dust}*: Collisional Heating of Dust Grains

(* conservative estimate)

L_{X,obs} constrains hot gas density and temperature

L_{X,obs} constrains hot gas density and temperature

 \star =spectral fitted temperatures

Accounting for the missing energy

 \star =spectral fitted temperatures

Accounting for the missing energy

Hot gas not strongly coupled with the ISM.

Accounting for the missing energy

Could winds be important for young, compact HII regions?

Ways Out: Where's the Missing Energy?

Dust heating via collisions? It might help.

Thermal conduction? Probably not.

Ways Out: Where's the Missing Energy? Physical leakage of the hot gas Rapid mixing of cold and hot gas via turbulent conduction

(Harper-Clark & Murray 2009, Rogers & Pittard 2013, Dale+2014)

Harper-Clark & Murray 2009

Rogers & Pittard 2013

(McKee+1984, Strickland & Stevens 1998, Nakamura+2006)

Summary

X-ray emission constrains physical properties of the shock-heated material in HII regions.

Bulk of the wind energy does not go mechanical work. Maybe winds important during early formation?

Accounting for the bulk of the stellar wind energy:

- Physical leakage
- Turbulent mixing of cold and hot gas

Thank you! Questions?

