The Formation of Young Massive Clusters: A Monolithic or Sub-structured Process?

Daniel Walker Steve Longmore, Nate Bastian, Diederik Kruijssen, Jill Rathborne, SMA CMZ Legacy Survey Team

Young Massive Clusters (YMCs)

What are they?

Gravitationally bound

• Young: few Myrs

• Massive: \geq 10⁴ M $_{\odot}$

Why do we care?

- Birthplaces of most massive stars (e.g. 'Pistol' star in Quintuplet).
- Rival stellar mass & density of globular clusters.
- May reveal a cluster mass continuum, from low-mass open clusters to high-mass YMCs.

Young Massive Cluster Formation

How do they form?

- Continuum in mass may suggest that *all* stellar clusters may form in a similar way.
- YMC formation currently not well understood.
- Two commonly proposed formation scenarios:
 - 'Monolithic Collapse'
 - 'Hierarchical Merging'

'Monolithic Collapse'

Compact, centrally-condensed natal gas cloud.

 Gravitationally bound, centrallycondensed stellar population forms.

 Feedback processes remove gas. Stellar cluster expands due to diluted gravitational potential.

e.g. Lada, Margulis & Dearborn 1984; Boily & Kroupa 2003; Bastian & Goodwin 2006; Baumgardt & Kroupa 2007, Banerjee & Kroupa '13, '14, '15

'Hierarchical Merging'

 Stars decouple from the gas. Stars and sub-clusters merge. Centrally-condensed, bound stellar cluster is formed.

e.g. Kruijssen et al. 2012; Girichidis et al. 2012; Fujii, Saitoh & Portegies Zwart 2012; Parker et al. 2014

Young Massive Clusters Progenitors

How to distinguish these two scenarios observationally?

- Scenarios require different initial conditions:
 - 'Monolithic Collapse' Initially very dense, centrally-concentrated gas.
 - 'Hierarchical Merging' Initially clumpy, sub-structured gas.
- Search for gas cloud progenitors to YMCs:
 - Reveal initial conditions.
 - Compare to later stages of formation/evolution.

YMC evolutionary sequence at Galactic Centre:

- Clouds 'a', 'd', 'e' and 'f' all ~ 10⁵ M_o, R ~ few pc, with little-to-no widespread star formation (Longmore et al 2012, Immer et al. 2012, Walker et al. 2015).
 - → Likely YMC precursors
- Sagittarius B2 contains two clusters of high mass stars (Main & North, e.g. Qin et al. 2011).
 - → Likely proto-YMCs

• Arches YMC is ~ 2 Myr and gas-free.

YMC evolutionary sequence at Galactic Centre:

- Clouds 'a', 'd', 'e' and 'f' all ~ 10⁵ M_o, R ~ few pc, with little-to-no widespread star formation (Longmore et al 2012, Immer et al. 2012, Walker et al. 2015).
 - → Likely YMC precursors
- Sagittarius B2 contains two clusters of high mass stars (Main & North, e.g. Qin et al. 2011).
 - → Likely proto-YMCs
- Arches YMC is ~ 2 Myr and gas-free.

YMC evolutionary sequence at Galactic Centre:

- Clouds 'a', 'd', 'e' and 'f' all ~ 10⁵ M_o, R ~ few pc, with little-to-no widespread star formation (Longmore et al 2012, Immer et al. 2012, Walker et al. 2015).
 - → Likely YMC precursors
- Sagittarius B2 contains two clusters of high mass stars (Main & North, e.g. Qin et al. 2011).
 → Likely proto-YMCs
- Arches YMC is ~ 2 Myr and gas-free.

YMC evolutionary sequence at Galactic Centre:

- Clouds 'a', 'd', 'e' and 'f' all ~ 10⁵ M_o, R ~ few pc, with little-to-no widespread star formation (Longmore et al 2012, Immer et al. 2012, Walker et al. 2015).
 - → Likely YMC precursors
- Sagittarius B2 contains two clusters of high mass stars (Main & North, e.g. Qin et al. 2011).
 → Likely proto-YMCs
- Arches YMC is ~ 2 Myr and gas-free.

INITIAL, INTERMEDIATE & FINAL EVOLUTIONARY STAGES, ALL AT SIMILAR DISTANCE AND ENVIRONMENT!

YMC evolutionary sequence at Galactic Centre:

- Clouds 'a', 'd', 'e' and 'f' all ~ 10⁵ M_o, R ~ few pc, with little-to-no widespread star formation (Longmore et al 2012, Immer et al. 2012, Walker et al. 2015).
 - → Likely YMC precursors
- Sagittarius B2 contains two clusters of high mass stars (Main & North, e.g. Qin et al. 2011).
 → Likely proto-YMCs
- Arches YMC is ~ 2 Myr and gas-free.

Surface Density Profiles (Gas)

Surface Density Profiles (Gas & Stars)

ENGAL Colombu Stensity (Cloud Friday) & SMA posters.)

SMA 1.3mm dust continuum^(See Cara Battersby's talk on Friday & SMA posters.)

SMA 1.3mm dust continuum^(See Cara Battersby's talk on Friday & SMA posters.)

- Mass estimates for these cores difficult due to maser emission (Caswell et al. 2010)
- $M_{Core} > 100 M_{\odot}$, but require temperature estimates for exact masses.

Summary

- Galactic centre YMC progenitors are not consistent with a 'monolithic' formation scenario (Walker et al. 2015). [Also true in the Galactic disk (Walker et al., in prep.)]
- SMA data reveal clumpy sub-structure possibly consistent with hierarchical growth and merging of substructure.
- Galactic centre YMC precursor clouds contain extremely massive cores (M >> 100 M_o).

Next Steps:

- Study the chemistry and kinematics of the small-scale massive cores in these clouds.
- Follow cores up at higher resolution single sources or fragmented?

Surface Density Profiles (Galactic Disk & Centre)

RADIUS

Sgr B2 UCHII Regions

Sgr B2 UCHII Regions

Cloud Kinematics

