RECONSTRUCTING HISTORIES OF CLUSTER FORMATION

Carlos Román-Zúñiga
Instituto de Astronomía, UNAM

With:
Jason Ybarra, Mauricio Tapia,
Sandily Rivera, Elena Jiménez,
João Alves, Elizabeth Lada, Charles Lada.
Schmidt’s Law: a local relation of the form
\[\Sigma(A_\kappa) = \kappa A_\kappa^{\alpha} \text{ (protostars pc}^{-2}) \] exists in (but not within) GMCs (L13).

SL is not sufficient to describe or to predict SF in active GMCs but it shows that the structure of the cloud plays a crucial role in the level of SF activity it will be developed.

S (\(>A_\kappa\)) declines and truncates effectively for most clouds, constraining current episodes of formation to the highest density regions, with little or no diffusion of protostars toward low density regions.

However, once protostars evolve and gas clears, it is more difficult to reconstruct the history of star formation. The picture is more complicated.
Combining near-IR, Spitzer and Chandra catalogs, we were able to use evolutive classes and evolutive class number density ratios to reconstruct the progression of cluster ages as a function of extinction.

- Rosette layout is favorable: minimal overlap of individual clusters.
- Rapid gas removal
- Nice correlation between age and extinction.
Towards understanding modes of cluster formation

• Same idea for W3 region. However this one is more entangled.

• Separation into evolutive classes (0/I.II.III) allows to determine the spatial distribution of young sources and the early evolution of the region.

Román-Zúñiga et al 2015 (subm; in revision)

Rivera-Ingraham 2011,13
Towards understanding modes of cluster formation

- Same idea for W3 region. However this one is more entangled.
- Separation into evolutive classes (0/I.II.III) allows to determine the spatial distribution of young sources and the early evolution of the region.
- We identify five principal clusters.

Román-Zúñiga et al 2015 (subm; in revision)
Towards understanding modes of cluster formation

- YSO surface density analysis provides evidence of sub-structure.
Towards understanding modes of cluster formation

- YSO surface density analysis provides evidence of sub-structure.
Towards understanding modes of cluster formation

- YSO surface density analysis provides evidence of sub-structure.
- Many groups associated with Class I sources and thus represent some of the most recent event of formation.

see also talk by Daniel Walker!!
Towards understanding modes of cluster formation

- YSO surface density analysis provides evidence of sub-structure.
- Many groups associated with Class I sources and thus represent some of the most recent event of formation.
- Class ratio maps allows us to attempt a rough reconstruction of the history of star formation in W3.
- Absence of Class 0/I sources and gas in IC1795 is indicative of a slightly older population.
Towards understanding modes of cluster formation

- YSO surface density analysis provides evidence of sub-structure.
- Many groups associated with Class I sources and thus represent some of the most recent event of formation.
- Class ratio maps allows us to attempt a rough reconstruction of the history of star formation in W3.
- Absence of Class 0/I sources and gas in IC1795 is indicative of a slightly older population.
- Class II are overabundant across the complex, and the large number of Class III candidates in W3-main may point towards rapid dispersion of disks.
- The large number of disk bearing sources in IC 1795 could be reinforce scenario sub-structured formation. If subgroup episodes are not simultaneous, could explain large age spread.
Towards understanding modes of cluster formation

- Comparison of KLFs from an Av-limited sample with models of young clusters. Sample is complete to about 0.2 Msun.
- Monte Carlo engine (Muench et al 2001) to generate an artificial population based on PMS evolution models (DM94).
- Observed KLF for all populations in the W3 complex compare well with cluster models with $t_f < 4.5$ Myr.
- IC 1795 has only recently removed gas and still presents a large fraction of young stars. W3OH appears also to have a mixed population in a larger spread.
- W3-Main, has a much larger gas reservoir, and is still forming a cluster about twice as massive.
Towards understanding modes of cluster formation

- Comparison of KLFs from an A_v-limited sample with models of young clusters. Sample is complete to about 0.2 M_{\odot}
- Monte Carlo engine (Muench et al. 2001) to generate an artificial population based on PMS evolution models (DM94)
- Observed KLF for all populations in the W3 complex compare well with cluster models with $t_f<4.5$ Myr.
- IC 1795 has only recently removed gas and still presents a large fraction of young stars. W3OH appears also to have a mixed population in a larger spread.
- W3-Main, has a much larger gas reservoir, and is still forming a cluster about twice as massive.
Towards understanding modes of cluster formation

- Comparison of KLFs from an Av-limited sample with models of young clusters. Sample is complete to about 0.2 Msun
- Monte Carlo engine (Muench et al 2001) to generate an artificial population based on PMS evolution models (DM94)
- Observed KLF for all populations in the W3 complex compare well with cluster models with $t_f<4.5$ Myr.
- IC 1795 has only recently removed gas and still presents a large fraction of young stars. W3OH appears also to have a mixed population in a larger spread
- W3-Main, has a much larger gas reservoir, and is still forming a cluster about twice as massive.
Towards understanding modes of cluster formation

A possible scenario for the progression of cluster formation in the W3 Complex

- Towards understanding modes of cluster formation
- A possible scenario for the progression of cluster formation in the W3 Complex
Towards understanding modes of cluster formation

- p-v plots in W3(OH) and W3-Main from Bieging’s ARO 13CO(3-2) map.
- Ejection of material from the main molecular clumps at the location of the clusters. Resolve opening flows.
- In W3(OH) we find a peak to peak velocity difference of 15-20 km/s within less than 0.5 pc.
- In W3-Main, we find a peak to peak velocity difference of 25-30 km/s within less than 0.7 pc.
- Mass loss rate at W3-Main, $\dot{M}_{\text{out}} \approx 7.2 \times 10^{-4} \, M_\odot \, \text{yr}^{-1}$. This is sufficient to remove $10^3 \, M_\odot$ of gas in about 1.5 Myr.
- This is consistent with a rapid gas removal scenario, which may occur in a period comparable to the T Tauri timescale.

13CO $J=3-2$**
**Bieging et al 2012
Towards understanding modes of cluster formation

- P-v plots in W3(OH) and W3-Main from Bieging’s ARO 13CO(3-2) map.
- Ejection of material from the main molecular clumps at the location of the clusters. Resolve opening flows.
- In W3(OH) we find a peak to peak velocity difference of 15-20 km/s within less than 0.5 pc.
- In W3-Main, we find a peak to peak velocity difference of 25-30 km/s within less than 0.7 pc.
- Mass loss rate at W3-Main, $\dot{M}_{\text{out}} = \sim 7.2 \times 10^{-4} \, M_\odot \, \text{yr}^{-1}$. This is sufficient to remove $10^3 \, M_\odot$ of gas in about 1.5 Myr.
- This is consistent with a rapid gas removal scenario, which may occur in a period comparable to the T Tauri timescale.
Towards understanding modes of cluster formation

- p-v plots in W3(OH) and W3-Main from Bieging’s ARO 13CO(3-2) map.
- Ejection of material from the main molecular clumps at the location of the clusters. Resolve opening flows.
- In W3(OH) we find a peak to peak velocity difference of 15-20 km/s within less than 0.5 pc.
- In W3-Main, we find a peak to peak velocity difference of 25-30 km/s within less than 0.7 pc.
- Mass loss rate at W3-Main, $\dot{M}_{\text{out}} = \sim 7.2 \times 10^{-4} \, M_\odot \, \text{yr}^{-1}$. This is sufficient to remove $10^3 \, M_\odot$ of gas in about 1.5 Myr.
- This is consistent with a rapid gas removal scenario, which may occur in a period comparable to the T Tauri timescale.

13CO $J=3-2^{**}$

Bieging et al. 2012
Towards understanding modes of cluster formation

• Cygnus-X DR15 was chosen first because of its staggering beauty :)
• However, it also has one of the most interesting layouts in the complex.
• The cluster has formed at the tip of a thick carved pilar in the southwest area of the complex.
• It lies next to a dark infrared cloud which is currently forming two clusters.
• Not shown here, the other cluster was possibly triggered by the expansion of a LBV G79.29+0.46 (d=1.4 kpc, see Rizzo et al., Palau et al 2014)

Roman-Zuniga, Rivera-Gálvez et al 2015, in prep
Towards understanding modes of cluster formation

- Cygnus-X DR15 was chosen first because of its staggering beauty :)
- However, it also has one of the most interesting layouts in the complex.
- The cluster has formed at the tip of a thick carved pilar in the southwest area of the complex.
- It lies next to a dark infrared cloud which is currently forming two clusters.
- Not shown here, the other cluster was possibly triggered by the expansion of a LBV G79.29+0.46 (d=1.4 kpc, see Rizzo et al., Palau et al 2014)

Roman-Zuniga, Rivera-Gálvez et al 2015, in prep
Towards understanding modes of cluster formation

- We modeled Class I SEDs for JHK+IRAC photometric observations using Robitaille et al Fitting Tool. Models provide best fit YSO model based on χ^2. Not perfect but one can obtain a quick estimate of YSO properties, like a poor-man’s spectroscopic survey. For a good number of cases, models suggest that stars forming in DR15 are moderate to massive, with relatively large circumstellar disks accretion rates. Cygnus-X child stars are not small, at least compared with clusters like the RMC.
Towards understanding modes of cluster formation

- Class II and Class III sources reveal a rapidly dispersed population, possibly formed in advance.
- Class I sources are mostly confined to the IRDC, as expected.
- Reconstruction of SFH using KLF samples show that DR15-C may be 3-4 Myr old!
- The cluster shows a very clear formation history, with a population mainly composed of WTTS in the hatching central cluster. Expansion of the main cluster envelope has proceeded relatively slowly.
- DR15c shell mass ~1500 Msun, expanding shell mass ~100 Msun. $\dot{M}_{\text{out}} \sim 2.5 \times 10^{-4} M_\odot \text{ yr}^{-1}$. Should require 3.5-4 Myr to remove the shell.
Towards understanding modes of cluster formation

• Class II and Class III sources reveal a rapidly dispersed population, possibly formed in advance.

• Class I sources are mostly confined to the IRDC, as expected.

• Reconstruction of SFH using KLF samples show that DR15-C may be 3-4 Myr old!

• The cluster shows a very clear formation history, with a population mainly composed of WTTS in the hatching central cluster. Expansion of the main cluster envelope has proceeded relatively slowly.

• DR15c shell mass ~1500 Msun, expanding shell mass ~100 Msun. \(M_{\text{out}} \sim 2.5 \times 10^{-4} M_\odot \text{ yr}^{-1} \). Should require 3.5-4 Myr to remove the shell.
Cluster formation modes are not independent of the local environment. However, effects of triggering and sequential formation may be more important at unity scales (clusters) rather than group scales (complexes).

Cluster formation proceeds preferentially following primordial structure of cloud. Like in Rosette. Triggering is a large scale process, like in W3.

Massive stars are possibly responsible for rapid gas removal in large complexes.

Is substructure (possibly related to potentials) more important than triggering? To what point is substructure related -or not- to global collapse processes?

What dominantes in DR15? erosion or feedback? why is the envelope removal slow?