Soul of High-Mass Star Formation, Puerto Varas, March 2015

Deuterium fractionation tracing the evolution of IRDC cores

Vlas Sokolov

(Max Planck Institute for Extraterrestrial Physics)

Vivien Chen (NTHU),

Sheng-Yuan Liu (ASIAA),

Yu-Nung Su (ASIAA)

Survey Introduction

- A number of great work on deuteruim fractionation in IRDCs is done already (e.g. Fontani et al. 2006, 2011, Chen et al. 2011, Miettinen et al. 2011, c.f. Matías Lackington's talk)
- We present a survey of 44 IRDC cores across 10 clouds
 - initially from Rathborne et al. (2006)
 - With ammonia temperature from Sakai et al. (2008):
 - **Nearby** (< 4.5 kpc)
 - Massive (> 100 $\rm M_{\odot})$
 - + three clouds from Rygl et. at (2010)
 - builds upon previous work (Chen et al. 2010, 2011)

Survey Introduction

- A number of great work on deuteruim fractionation in IRDCs is done already (e.g. Fontani et al. 2006, 2011, Chen et al. 2011, Miettinen et al. 2011, c.f. Matías Lackington's talk)
- We present a survey of 44 IRDC cores across 10 clouds
 - initially from Rathborne et al. (2006)
 - With ammonia temperature from Sakai et al. (2008):
 - **Nearby** (< 4.5 kpc)
 - Massive (> 100 $\rm M_{\odot})$
 - + three clouds from Rygl et. at (2010)
 - builds upon previous work (Chen et al. 2010, 2011)
- **Observations** towards the cores:
 - N₂H⁺, N₂D⁺, C¹⁸O (3-2) with 10m SMT
 - Rygl et al. (2010) clouds with Nobeyama 45m in ammonia
 - Herschel archival data

Herschel SED

Flux, MJy/sr 01

Data analysis (cont.)

• LoS-averaged dust

(b)

- Ammonia rotational temperatures
- Deuterium fractionation
 N₂H⁺ (3-2) line width

- temperatures,
- Column densities,
- Luminosities

Data analysis (cont.)

Caveats

Different beam sizes of single dish data *Herschel* analysis caveats:

- no background/foreground subtraction for Herschel maps
- different β in different IRDCs
- warm SED components contamination
- Ammonia rotational temperatures
- Deuterium fractionation
- N_2H^+ (3-2) line width

- LoS-averaged dust
- temperatures,
- Column densities,
- Luminosities

Bringing it all together...

Results

- Orange: UC HII region
- Red: HMC
- Green: HMPOs
- Yellow: HMSCs

 Clear decreasing trends in deuterium fractionation against gas temperatures and line widths

Results

- Orange: UC HII region
- Red: HMC
- Green: HMPOs
- Yellow: HMSCs

- Clear decreasing trends in deuterium fractionation against gas temperatures and line widths
- R_D traces an evolutionary sequence, as revealed by the *Herschel* data comparison
- Better insight in pinpointing the early IRDC core evolution