Deuterium fractionation tracing the evolution of IRDC cores

Vlas Sokolov
(Max Planck Institute for Extraterrestrial Physics)

Vivien Chen (NTHU),
Sheng-Yuan Liu (ASIAA),
Yu-Nung Su (ASIAA)
Survey Introduction

• A number of great work on **deuterium fractionation in IRDCs** is done already (e.g. Fontani et al. 2006, 2011, Chen et al. 2011, Miettinen et al. 2011, c.f. Matías Lackington's talk)

• We present a survey of **44 IRDC cores** across **10 clouds**
 • initially from Rathborne et al. (2006)
 • With ammonia temperature from Sakai et al. (2008):
 • **Nearby** (< 4.5 kpc)
 • **Massive** (> 100 M☉)
 • + three clouds from Rygl et. at (2010)
 • builds upon previous work (Chen et al. 2010, 2011)
Survey Introduction

- A number of great work on **deuterium fractionation in IRDCs** is done already (e.g. Fontani et al. 2006, 2011, Chen et al. 2011, Miettinen et al. 2011, c.f. Matías Lackington's talk)

- We present a survey of **44 IRDC cores** across **10 clouds**
 - initially from Rathborne et al. (2006)
 - With ammonia temperature from Sakai et al. (2008):
 - Nearby (< 4.5 kpc)
 - Massive (> 100 M☉)
 - + three clouds from Rygl et. al (2010)
 - builds upon previous work (Chen et al. 2010, 2011)

- **Observations** towards the cores:
 - N₂H⁺, N₂D⁺, C¹⁸O (3-2) with 10m SMT
 - Rygl et al. (2010) clouds with Nobeyama 45m in ammonia
 - *Herschel* archival data
Data analysis

(a) (1, 1)

NH$_3$ fits

(b)

Herschel SED

(c)

Dust temperature

Td, K

N(H$_2$), cm$^{-2}$

(d)

Column density

NH$_3$ fits

Td, K

N(H$_2$), cm$^{-2}$
Data analysis (cont.)

- Ammonia rotational temperatures
- Deuterium fractionation
- N_2H^+ (3-2) line width

- LoS-averaged dust temperatures,
- Column densities,
- Luminosities

NH$_3$ fits

(a) (1, 1)

(b) Herschel SED

LoS-averaged dust temperatures,
Column densities,
Luminosities
Data analysis (cont.)

Caveats

Different beam sizes of single dish data

Herschel analysis caveats:
- no background/foreground subtraction for Herschel maps
- different β in different IRDCs
- warm SED components contamination

- Ammonia rotational temperatures
- Deuterium fractionation
- N_2H^+ (3-2) line width
- LoS-averaged dust temperatures,
- Column densities,
- Luminosities

* Bringing it all together...*
Results

- **Orange**: UC HII region
- **Red**: HMC
- **Green**: HMPOs
- **Yellow**: HMSCs

- Clear decreasing trends in deuterium fractionation against gas temperatures and line widths
Results

- **Orange**: UC HII region
- **Red**: HMC
- **Green**: HMPOs
- **Yellow**: HMSCs

- Clear decreasing trends in deuterium fractionation against gas temperatures and line widths
- R_D traces an evolutionary sequence, as revealed by the *Herschel* data comparison
- Better insight in pinpointing the early IRDC core evolution