Fragmentation in the IRDC G14.225-0.506

Gemma Busquet (IAA-CSIC)

R. Estalella, A. Palau, H. Baobab Liu, Q Zhang, J.M.
Girart, G. Anglada, I. de Gregorio-Monsalvo, T. Pillai,
P.T.P Ho

Soul of High-Mass Star Formation

NSTITUTO de ASTROFIS

I.A.A

- . Introduction
- . The IRDC G14.225-0.506
- . Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- · Conclusions

- . Introduction
- . The IRDC G14.225-0.506
- . Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- · Conclusions

Introduction

Highly inhomogeneous structure

Soul of High-Mass Star Formation

High degree of cloud fragmentation in the star formation process

Observationally:

- number of condensations is typically smaller than the predicted from pure thermal Jeans fragmentation
 - ~ Gravily
 - Turbulence
 - Magnetic fields
 - Angular momentum
 - Stellar feedback

Soul of High-Mass Star Formation

massive dense core M~50-1000 Msun

- . Introduction
- o The IRDC G14.225-0.506
- · Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- · Conclusions

The IRDC G14.225-0.506 (or M17 SWex)

Star formation activity

• Several intermediate-massYSOs identified using Spitzer data (Povich & Whitney 2010): Stage 0/I Stage II Stage III ambiguous

H20 maser emission (Wang et al. (2006)

Soul of High-Mass Star Formation

NH3 (VLA + Effelsberg): Network of 8 filaments and 2 Hubs Cores embedded within filaments with a mean separation ~0.33 pc

Hubs are warmer, H2O maser and IR sources, larger line widths, and Mline — main sites of stellar activity within the cloud

Soul of High-Mass Star Formation

- . Introduction
- . The IRDC G14.225-0.506
- · Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- · Conclusions

Observations

- Large scale view of Hubs (0.1-0.2 pc)
- APEX-LABOCA @870,mm
- CSO-SHARC II @350,000
- SMA mosaic at 1.3 mm
- configurations: compact + extended
- (+ very extended for hub-N)

beam~1.5" ~3000 AU~0.01 pc Msens~0.3 Msun

Soul of High-Mass Star Formation

- . Introduction
- . The IRDC G14.225-0.506
- . Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- · Conclusions

Results: Large scale view (from 0.5 pc to 0.05 pc)

grey scale: CSO @350 blue contours: LABOCA @870 Soul of High-Mass Star Formation

Results: small scale (down to 0.01 pc)

Soul of High-Mass Star Formation

Results: small scale (down to 0.01 pc)

Number of condensations:

hub-s = 17

Masses~0.7 to 18 Msun

Soul of High-Mass Star Formation

Fragmentation level

Imaging with the same uv-range; convolution to the same beam (

Number of condensations:

hub-N=5

hub-S = 13

Soul of High-Mass Star Formation

- . Introduction
- . The IRDC G14.225-0.506
- . Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- Conclusions

Model density and Temperature profile

Soul of High-Mass Star Formation

Density structure based on a sample of 19 massive dense cores (Palau et al. 2014)

Weak trend of fragmentation level and density power law Fragmentation increases with density as a combination of flat density profile and high central density

Soul of High-Mass Star Formation

0

resolution 1000 AU

• At smaller scales ($FoV^{0.1pc}$) we count 3-4 fragments in each hub.

n the fragmentation level are seen at scal

Soul of High-Mass Star Formation

Ç	General properties of Hub.							
Deriv	red from	n the	best-fi	t model:	C	LFE~0	.5-30	%
	M (Msun)	Lbol (Lsun)	Mo.15pc (Msun)	No.15pc (10 ⁵ cm ⁻³)	To.15pc (K)	M th Jeans (Msun)	Njeans	
hub-N	979±329	995	126	1.3	18	1.31	5-29	
hub-s	717±250	531	105	1.1	17	1.21	4-26	
Deriv	ed using) NH3	emissi	on (Busqu	n (Busquet et al. 2013)			
			On-th (km/s)	M ^{tot} :	M ^{tot} Jeans(Msun)			
	hub-N		0.96		28		1	
	hub-s		1.01		32		1	
CFE~								10

"Pure" thermal Jeans fragmentation works!

Soul of High-Mass Star Formation

0

General properties of Hubs

- · Using NH3 emission (Busquet et al. 2013)
 - Rotational-to-gravitational energy: Brok = 14
 - Turbulence to thermal energy (Math number): M=3-7
- Using near-IR polarization measurements (Santos et al. in prep.)
- Turbulence with respect magnetic field (Alfvén Mach number), MA=1-1.2 using Btot=0.4-0.5 mG
- \sim Mass-to-flux ratio $(M/\phi_B)(M/\phi_B)cr=1.5-2.2$

Core evolution and stellar feedback

Nmm=5 NIR/Nmm=1.4

 $N_{mm}=13$ $N_{IR}/N_{mm}=0.4$

Soul of High-Mass Star Formation

- . Introduction
- . The IRDC G14.225-0.506
- . Observations
- · Results: the fragmentation level
- . What controls the fragmentation process?
- . Conclusions

Conclusions

- We found significant differences in the fragmentation
 Level
- The density and temperature structure appear to be exactly the same in both hubs
- Both hubs present similar physical conditions (Mach number, βrot, magnetic field, etc)
- Core evolution, stellar feedback, and possibly magnetic field, could explain the high level of fragmentation observed in hub-s than in hub-N.

