

Complex, coherent kinematics in a highly filamentary infrared dark cloud: the case of G034.43+00.24

A. T. Barnes^{1,2}, J. D. Henshaw^{1,2}, P. Caselli^{3,2}, I. Jimenez-Serra^{5,4}, F. Fontani⁶, J. C. Tan^{7,8} and A. Pon^{3,2}

¹Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
²School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
³Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1,D-85748 85748, Germany
⁴European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
⁵University College London, Department of Physics and Astronomy, 132 Hampstead Road, London NW1 2PS, UK
⁶INAF - Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125, Firenze, Italy
⁷Department of Astronomy, University of Florida, Gainesville, FL 32611, USA

How complex is the gas structure of massive IRDCs?

G034.43+00.24 – one of highest contrast IRDCs, most massive (1700 M_{\odot}) with radius of 10pc

NIR+MIR Mass surface density plot taken from Kainulainen & Tan (2013).

CIRCLES = millimeter continuum cores (Rathborne et al. 2006).

CROSSES = MIR extinction cores F cores (Butler and Tan 2012).

HOLES = Sources of MIR emission.

SQUARES = Enhanced 4.5 micron emission 'green fuzzies' (Chambers et al. 2009).

From Rathborne et al. (2006), and Butler & Tan (2009).

2D structure of G034.43+00.24

Mass surface density plot taken from Kainulainen & Tan (2013)

2D structure of G034.43+00.24

Mass surface density plot taken from Kainulainen & Tan (2013)

Moment analysis of G034.43+00.24

Mass surface density plot taken from Kainulainen & Tan (2013)

Previous summary:

2D analysis is simple

But...

What about the **position-position-velocity** structure?!

dream plan achieve

Fitting = Henshaw et al. (2013, Linking = Henshaw et al (2014)

Fitting = Henshaw et al. (2013, Linking = Henshaw et al (2014)

dream plan achieve

Mass surface density plot taken from Kainulainen & Tan (2013)

dream plan achieve

Mass surface density plot taken from Kainulainen & Tan (2013)

collapse centre

a. As viewed on the sky

Complex velocity morphology

e.g. L1495/B213 Taurus region – Tafalla & Hacar (2014) G19.30+0.07 – Devine et al. (2011) IRDC 18310-4 - Beuther et al. (2013) 4 IRDCs - Beuther et al. (2014) Cygnus-X – Csengeri et al. (2011) DR21 – Csengeri et al. (2011) 41 IRDCs – Ragan et al. (2006)

> Simulations – Smith et al. (2013) Butler, Tan & van Loo (2014) Moeckel & Burkert (2014) Gomez & Vazquez-Semadeni (2014)

Still no in-depth statistical analysis of the kinematics.

collapse centre

b. As viewed sideways

Complex velocity morphology from GMC

GMC surrounding G034 - Hernandez & Tan (2015)

8micron GLIMPSE

Intensity weighted centroid velocity

Conclusions

Extinction mapping and moment analysis

SIMPLE

Spectral analysis

COMPLEX

dream plan achieve

Identified 3 coherent, extended velocity components.

More in Barnes et al. (in prep)

Future plans

Conduct a statistical analysis of **8** other IRDCs to see if this level of complexity is inherent to the general IRDC population.

Mass surface density plot taken from Kainulainen & Tan (2013)