Imaging Hot Ammonia in Luminous High-mass Star Forming Regions

Ciriaco Goddi BlackHoleCam Project Scientist

<u>Main collaborators</u> Qizhou Zhang (CfA, Cambridge) Christian Henkel (MPIfR, Bonn)

1. The metastable levels (J = K) are collisionally excited, and <u>multiple</u> transitions can be used in a Boltzmann energy diagram

=> Excellent thermometer of dense molecular gas

2. Can trace excitation up to E_{ν} ~2000 K within 20 – 40 GHz => can pick up dense gas at different T in the cloud

One could observe <u>multiple</u> NH₃ inversion lines with <u>high</u> <u>excitation temperatures</u> to trace the hottest and densest molecular gas in the vicinity of the central YSO(s)

- ➤ infalling circumstellar envelopes
- centrifugally-supported accretion disks

Observational constraints on the physics of accretion?

Why not observing (sub)mm lines with ALMA? Advantages of highly-excited NH₃ inversion lines

With respect to submm spectroscopy (e.g. ALMA)

- i. (Sub)mm transitions can probe outer parts of disks/ envelopes where dust opacity is low, but cannot penetrate the innermost regions, where dust emission can dominate over molecular emission at a given frequency
 => cm lines can penetrate the innermost disk/env. regions
- Measuring infall is easier in cm lines, because the molecular gas can be seen in absorption against bright HII regions (emission lines would be submerged by noise)
 => gas kinematics at very small scales with interferometers
- iii. The detection of faint lines of high-density tracers in the (sub)mm spectrum can be severely affected by blending with stronger transitions from other species (line forest)
 => cm lines not affected by confusion

The JVLA with new broadband receivers can image all these inversion lines!

JVLA program to image high-JK NH₃ transitions

Transition (J,K)	a $\nu_{\rm rest}$ (MHz)	<i>E</i> _{<i>l</i>} / <i>k</i> (K)	JVLA Receiver
(7,7)	25715.14	538	K
(9,9)	27477.94	852	Ka
(10,10)	28604.75	1035	Ka
(12, 12)	31424.94	1455	Ka
(13, 13)	33156.84	1691	Ka
(14,14)	35134.28	1945	Ka

Observations details:

- Array: B or C-configuration
 - Linear resolution: O(500 AU)
 - RMS on ch. maps: O(1 mJy)
 - Channel width: 0.4 km/s
 - Correlator: Progressively more lines observed simultaneously
- Targets: Orion-KL, NGC7538, W51, W3OH, DR21OH, G10.62, SgB2, W49N, G34.26....

I. NGC7538 IRS1: an accreting O-type Star

D~2.7 kpc, L~10⁵ L_{\odot} , O6-7 star of 30 M_{\odot}

I. NGC7538 IRS1: an accreting O-type Star

Velocity-Integrated absorption

I. NGC7538 IRS1: an accreting O-type Star NH₃ Absorption Velocity Velocity-channel centroid NH₃ maps

(θ=0.08")

- <u>Two</u>rotating (quasi-edge-on) disks in individual YSOs (from CH₃OH)
- North-South Rotation of the Hot Thermal Gas (from NH₃)

Moscadelli & Goddi, 2014, A&A, 566, 150

I. NGC7538 IRS1: an accreting O-type Star

Two accretion disks around two massive YSOs in the cavity of a rotating circumbinary envelope

Goddi, Zhang, & Moscadelli, 2015, A&A, 573, 108

Goddi, Henkel, Zhang, Zapata, & Wilson, 2015, A&A, 573, 109

Goddi, Henkel, Zhang, Zapata, & Wilson, 2015, A&A, 573, 109

III. W51-e2

NH₃ Absorption-Integrated Velocity Maps

Summary

High-resolution imaging of highly excited NH₃ lines is well suited to study kinematics and physical conditions of the hottest and densest molecular gas in accretion disks and envelopes around O-type YSOs.

- I. NGC7538 IRS1 (HC-HII) hosts a circumbinary rotating envelope, which feeds two circumstellar rotating disks
- II. W51-North (pre-HII) may be a wide massive binary exciting rare SiO and NH_3 masers
- III. W51-e2 (HC-HII) has an NH₃ disk perpendicular to a collimated CO outflow: analogous to disk/jet systems in solar-like stars?

Edge-on Disk Model

For an edge-on disk in centrifugal equilibrium:

The best values of R_0 and q are derived by minimizing the $\chi 2$:

$$\chi^2 = \frac{1}{N_{free}} \left(\sum_i \left(\frac{A_z^i - \Upsilon^i}{\Delta \Upsilon^i} \right)^2 + \sum_j \left(\frac{V_s^j - \Lambda^j}{\Delta \Lambda^j} \right)^2 \right)$$

Accelerations

3D Velocities

Parameters of the two Edge-on Disks

Fit to positions, I.o.s. velocities, accelerations, and proper motions of maser spots, gives :

IRS1b
$$\begin{cases} R_0 = 550 \pm 10 \text{ AU} \\ q = 1.9 \pm 0.06 \\ M_0 = 16 \pm 1 \text{ M}_{\odot} \end{cases}$$
$$R_0 = 740 \pm 100 \text{ AU} \\ q = 0.8 \pm 0.8 \\ M_0 = 25 \pm 10 \text{ M}_{\odot} \end{cases}$$

Keplerian disks may exist around massive O-type YSOs after all! Moscadelli & Goddi, 2014, A&A, 566, 150

Rotation in Edge-on Disks

Five (independent) pieces of evidence strongly suggest edgeon rotation traced by maser clusters:

- 1. linear or elongated spatial distribution;
- 2. regular variation of V_{LSR} with position along the major axis of the distribution;
- 3. proper motions approximately parallel to the elongation axis;
- 4. average amplitude of proper motions ($\approx 5 \text{ km s}^{-1}$) similar to the variation in V_{LSR} (4–6 km s⁻¹) across the maser cluster;