Infrared Dark Clouds & Massive Star Formation

Gary Fuller

Jodrell Bank Centre for Astrophysics & UK ALMA Regional Centre Node School of Physics & Astronomy University of Manchester

EUROPEAN ARC

MANCHESTER 1824

The University of Manchester

Cast

Nicolas Peretto (Cardiff) Adam Avison (Manchester) Alessio Traficante (Manchester) Clare Lenfestey (Manchester) Matias Lackington (Manchester) Catherine McGuire (Manchester) Jaime Pineda (Manchester/Zurich) Ana Durate-Cabral (Exeter)

Why Are Massive Stars Important?

- Drive the chemical and physical evolution of the Galaxy
- Massive stars (M>8M_o, L>10⁴ L_o) rapidly dominate their environment
 - Radiation
 - Winds
- Most stars form in clusters (Lada & Lada 2003)
 - Many clusters contain massive stars
 - Positive or negative feedback on current and future star formation?
- Most difficult to form
 - Time scales
 - Feedback

Stellar Feedback

Need a sample of dense, massive regions which are not (yet) dominated by star formation to study the initial conditions.

1.5

RCW79

(Walch et al. 2011)

"Star formation is a messy, complex process." I. Smail, RAS meeting 2010

Initial Conditions Are Important

Girichidis et al 2011 100 M_o core 0.2 pc diameter

Initial density profile in core

Mass distribution of fragments after collapse

Look where the light isn't

- Look for quiescent gas where there isn't (much) emission
 - Dark clouds seen in absorption against the diffuse IR

IRDCs first seen with ISO (Perault et al. 1996)

First extensive catalogue MSX

(Carey et al. 1998, 1999, 2000; Teyssier et al. 2002; Schuller et al. 2009; Vasyunina et al 2009; Teyssier et al. 2002; Ragan et al. 2006; Pillai et al. 2006, 2007; Beuther & Sridharan 2007; Chambers et al 2009; Jackson et al. 2008; Simon et al. 2006a,b; Rathborne et al 2007/2008; Wang et al. 2008; Zhang et al. 2009; Butler & Tan 2009; Ragan et al. 2009)

Spitzer GLIMPSE provided an opportunity for a higher sensitive, higher resolution survey

Spitzer Dark Cloud Catalogue **An New IRDC Catalogue** Spitzer GLIMPSE & GLIMPSE II 8µm data. Construct maps of $au_{8\mu m} = -\ln \left(\frac{I_{8\mu m}}{2} \right)$ $I_{\rm fore}$ Spitzer Dark Clouds (SDC): connected regions of tau(8um)>0.35 with peak > 0.7 • $N(H_2) > 10^{22} \text{ cm}^{-2}$ with peaks $N(H_2) > 2 \times 10^{22} \text{ cm}^{-2}$ d>4" (0.1 pc at 5 kpc) 15,000 clouds in region 295°<1 <65°, -1°
b<1° Masses from few M_0 to ~10⁴ M_0 Sizes 0.1 to 6 pc

Peretto & Fuller 2009; Lenfestey, Peretto & Fuller 2015; Peretto & Fuller 2010

SDCs & Massive Star Formation

Some SDCs are forming massive stars
~800 SDCs associated with bright 24m sources
200 associated with 6.7 GHz methanol masers. (33% of 630 masers)
248 associated with EGOs (84% of 297 EGOs).
Average properties: 1.7pc radius, 700M_o mass

ALMA Dust Continuum Emission

- Dust Continuum Emission Both 8/24µm sources detected MM1 Peak flux ~0.1 Jy ~10% of mass of cloud within 0.1 pc sized region.
 - n~10⁷-10⁸ cm⁻³

Region	Size (pc)	Mass (10 ³ M _{sun})
SDC335	2.4	5.5
Centre	1.2	2.6
F1	0.3x2.0	0.4
F2	0.3x1.3	0.2
MM2	0.057	65 M _{sun}
MM1	0.054	550 M _{sun}

Dense Gas Velocity: ALMA N₂H⁺J=1-0

Velocity Structure

Methanol line (E~200K) peak on sources \rightarrow source velocity

Increase in linewidth towards the central sources - Blending of filament velocities?

Simulations Show Uniform Velocity Filaments

10⁴ M_{sun} Ellipsoidal cloud (z_o=2r_o)

Initial density at 5pc =500 cm⁻³

$$n(r,z) = n_0 / (1 + (r/r_0)^2 + (z/z_0)^2)$$

Highly centrally condensed

(Hennebelle; Schneider et al 2010)

SDC335 is already forming 3 massive stars -Can we find similar objects before they form (massive) stars? Are they centrally condensed or fragmented? What is their velocity & 'turbulent' structure?

Compact Sources In The SDCs

- Extract and cross-match compact sources from Hi-GAL data associated with SDCs in 15°</l>
 - * 3500 SDCs
- Using new elliptical aperture photometry routine *Hyper* (Traficante et al 2014)

70µm

- Merged catalogue of sources detected at 160, 250 and 350 μm
 - ★ 1723 clumps in 764 SDCs
- Associate 70µm sources
 - * Protostellar clumps
- ★ 1056 in 586 SDCs
 ★ Starless clumps
 ★ 667 in 389 SDCs
 Greybody SED fitti
- \star Mass, temperatur

Traficante, Fuller et al 2015a,

160µm

250µm

350um

Potentially Massive Star Forming?

Currently following up a sample of 18 SDC335-like starless cores

A Massive Starless Core

Traficante, Fuller et al 2015b, in prep.

SDC13: Infalling Filaments

18^h14^m35^s

30^s

Right Ascension (J2000)

25[°]

 100 M_o in each of MM1 & MM2 One star forming, the other starless
 200 M_o in each of the two filaments Line mass 4-8x larger than maximum
 stable mass for 12 K – unstable to
 fragmentation

(Peretto, Fuller et al. 2014)

SDC13: Infalling Filaments

IRAM 30m N₂H⁺ J=1-0
Linear velocity gradient along filaments
Consistent with infall/contraction
Anti-correlated increase in linewidth
Gravitationally driven turbulence?
Increasing local Jeans mass?

Summary

- SDC catalogue excellent resource for finding young potential cluster and massive star forming regions
- SDC335 contains one of the most extreme cores known and is likely to go on to form a Trapiziumlike cluster
 - Identified a sample of massive starless clumps with masses and sizes similar to SDC335
- Interesting kinematic signatures dv(R), velocity gradients – but with different origins

www.irdarkclouds.org

Structure of MM1 & 2

1.2mm Dust Continum,

IRAM 30m MAMBO (grey) SMA (purple contours)

Evolution from steep SIS density profile to shallower infall profile?

MM2 much weaker than MM1

Model

mm1 $ho \propto r^{-1}$

MM2 $ho \propto r$

Model image at 1.2mm

