The **astrochemical link** between dark clouds and hot cores?
The **astrochemical link** between dark clouds and hot cores?

Sarah Fechtenbaum
Star Formation meeting
03/10/15
The **astrochemical link** between dark clouds and hot cores?

Sarah Fechtenbaum
Star Formation meeting
03/10/15
CygX-N63: a lovely protostar
CygX-N63: a lovely protostar

Found by Motte et al. 2007
CygX-N63: a lovely protostar

Found by Motte et al. 2007
CygX-N63: a lovely protostar

Found by Motte et al. 2007
CygX-N63: a lovely protostar

Found by Motte et al. 2007

Simple

Isolated

Young

VLA image at 8.4 GHz
CygX-N63: a lovely protostar

Found by Motte et al. 2007

Simple

Isolated

Young

Massive

~44 M⊙ in 2500 AU
350 L⊙

Duarte-Cabral 2013
CygX-N63: a lovely protostar

Found by Motte et al. 2007

Massive

~44 M☉ in 2500 AU
350 L☉

Duarte-Cabral 2013

Future star of 20-25 M☉
Unbiased spectral survey

235 hours of observation

181 GHz observed

~2600 lines at a 4 \sigma level

10 lines / GHz

rms \sim 3 \text{ mK} \quad 9 \text{ mK} \quad 19 \text{ mK}
Unbiased spectral survey

235 hours of observation

181 GHz observed

~2600 lines at a 4 σ level

10 lines / GHz
Chemical composition

- 95% of the lines identified
- 67 molecules
- Abundances determined for 56 molecules
Chemical composition

- 95% of the lines identified
- 67 molecules
- Abundances determined for 56 molecules

What is the origin of molecular emission?
Spatial analysis: spectral profiles

Narrow lines < 2 km s\(^{-1}\)

Including N\(_2\)H\(^+\), N\(_2\)D\(^+\), DNC, DCO\(^+\), NH\(_2\)D, C\(_3\)H, C\(_4\)H…

\[T_{\text{ex}} = 13 \text{ K} \]
Spatial analysis: spectral profiles

Narrow lines < 2 km s\(^{-1}\)

Including N\(_2\)H\(^+\), N\(_2\)D\(^+\), DNC, DCO\(^+\), NH\(_2\)D, C\(_3\)H, C\(_4\)H…

\(T_{\text{ex}} = 13\ \text{K}\)

Envelope tracers
Spatial analysis: spectral profiles

Broad lines

A large part of the molecules, including H_2CO, HCN, CS, CN

$T_{\text{ex}} = 14$ and 17 K
Spatial analysis: spectral profiles

Broad lines

A large part of the molecules, including H_2CO, HCN, CS, CN

$T_{\text{ex}} = 14$ and 17 K
Spatial analysis: spectral profiles

Broad lines

A large part of the molecules, including H$_2$CO, HCN, CS, CN

$T_{ex} = 14$ and 17 K

SiO, SO have a very broad component
Spatial analysis: spectral profiles

Broad lines

A large part of the molecules, including H$_2$CO, HCN, CS, CN

T$_{ex} = 14$ and 17 K

SiO, SO have a very broad component

Probably influenced by the outflow
Spatial analysis: population diagrams

Most of the population diagrams show a unique slope.

All oxygen-bearing COMs have two slopes: CH$_3$OH, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, C$_2$H$_5$OH + CH$_3$CN

=> low T_{ex} ~ 21 K and high T_{ex} ~130 K
Spatial analysis: population diagrams

Most of the population diagrams show a unique slope.

All oxygen-bearing COMs have two slopes: CH$_3$OH, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, C$_2$H$_5$OH + CH$_3$CN

=> low T_{ex} ~ 21 K and high T_{ex} ~130 K
Spatial analysis: population diagrams

Most of the population diagrams show a unique slope.

All oxygen-bearing COMs have two slopes: \(\text{CH}_3\text{OH}, \text{CH}_3\text{CHO}, \text{CH}_3\text{OCH}_3, \text{CH}_3\text{OCHO}, \text{C}_2\text{H}_5\text{OH} \) + CH\(_3\)CN

\[\Rightarrow \text{low } T_{\text{ex}} \sim 21 \text{ K and high } T_{\text{ex}} \sim 130 \text{ K} \]
Spatial analysis: PdBI observations

29 transitions observed with the PdBI
Spatial analysis: PdBI observations

29 transitions observed with the PdBI
Spatial analysis: PdBI observations

29 transitions observed with the PdBI

Emission radius (AU) vs. Line width (km/s)
Spatial analysis: PdBI observations

29 transitions observed with the PdBI
Spatial analysis: PdBI observations

29 transitions observed with the PdBI
Spatial analysis - summary

- HC$_3$N
- DN
- CN
- COMs
- H$_2$CO
- D$_2$CO
- C$_4$H
- N$_2$D$^+$
- N$_2$H$^+$
- HNC
- DNC
- DC$_3$N
- HCN
- HC$_5$N
- DCN
- DCO$^+$
- HCO$^+$
Spatial analysis - summary

Extended envelope

\[\langle \text{FWHM}_n \rangle = (2.9 \pm 0.0) \text{ km s}^{-1} \]

\[\langle \text{FWHM}_b \rangle = (6.9 \pm 0.4) \text{ km s}^{-1} \]
Spatial analysis - summary

Extended envelope

\[\langle \text{FWHM}_n \rangle = (2.9 \pm 0.0) \text{ km s}^{-1} \]

\[\langle \text{FWHM}_b \rangle = (6.9 \pm 0.4) \text{ km s}^{-1} \]

Inner envelope

\[\langle \text{FWHM} \rangle = (2.2 \pm 0.3) \text{ km s}^{-1} \]

\[\langle T_{ex} \rangle = (13 \pm 3) \text{ K} \]
Spatial analysis - summary

Extended envelope

\[\langle \text{FWHM}_n \rangle = (2.9 \pm 0.0) \text{ km s}^{-1} \]
\[\langle \text{FWHM}_b \rangle = (6.9 \pm 0.4) \text{ km s}^{-1} \]

Inner envelope

\[\langle \text{FWHM} \rangle = (2.2 \pm 0.3) \text{ km s}^{-1} \]
\[\langle T_{\text{ex}} \rangle = (13 \pm 3) \text{ K} \]

Envelope + outflow / hot core

\[\langle \text{FWHM}_n \rangle = (2.6 \pm 0.2) \text{ km s}^{-1} \]
\[\langle \text{FWHM}_b \rangle = (8.9 \pm 0.5) \text{ km s}^{-1} \]
\[\langle T_{\text{ex},n} \rangle = (14 \pm 2) \text{ K} \]
\[\langle T_{\text{ex},b} \rangle = (17 \pm 2) \text{ K} \]
Spatial analysis - summary

Extended envelope

Inner envelope

Envelope + outflow / hot core

Hot core

\[\langle \text{FWHM}_n \rangle = (2.9 \pm 0.1) \text{ km s}^{-1} \]
\[\langle \text{FWHM}_b \rangle = (6.9 \pm 0.4) \text{ km s}^{-1} \]
\[\langle T_{ex,n} \rangle = (14 \pm 2) \text{ K} \]
\[\langle T_{ex,b} \rangle = (17 \pm 2) \text{ K} \]

\[\langle \text{FWHM} \rangle = (2.2 \pm 0.3) \text{ km s}^{-1} \]
\[\langle T_{ex} \rangle = (13 \pm 3) \text{ K} \]

\[\langle \text{FWHM}_n \rangle = (2.6 \pm 0.2) \text{ km s}^{-1} \]
\[\langle \text{FWHM}_b \rangle = (8.9 \pm 0.5) \text{ km s}^{-1} \]
\[\langle T_{ex,n} \rangle = (14 \pm 2) \text{ K} \]
\[\langle T_{ex,b} \rangle = (17 \pm 2) \text{ K} \]

\[\langle \text{FWHM} \rangle = (3.3 \pm 0.3) \text{ km s}^{-1} \]
\[\langle T_{ex} \rangle = (127 \pm 35) \text{ K} \]
Spatial analysis - summary

1. **Extended envelope**
 - $\langle \text{FWHM}_n \rangle = (2.9 \pm 0.0) \text{km s}^{-1}$
 - $\langle \text{FWHM}_b \rangle = (6.9 \pm 0.4) \text{km s}^{-1}$

2. **Inner envelope**
 - $\langle \text{FWHM} \rangle = (2.2 \pm 0.3) \text{km s}^{-1}$
 - $\langle T_{\text{ex}} \rangle = (13 \pm 3) \text{K}$

3. **Envelope + outflow / hot core**
 - $\langle \text{FWHM}_n \rangle = (2.6 \pm 0.2) \text{km s}^{-1}$
 - $\langle \text{FWHM}_b \rangle = (8.9 \pm 0.5) \text{km s}^{-1}$
 - $\langle T_{\text{ex},n} \rangle = (14 \pm 2) \text{K}$
 - $\langle T_{\text{ex},b} \rangle = (17 \pm 2) \text{K}$

4. **Hot core**
 - $\langle \text{FWHM} \rangle = (3.3 \pm 0.3) \text{km s}^{-1}$
 - $\langle T_{\text{ex}} \rangle = (127 \pm 35) \text{K}$
We have found the pristine gas

Composition

- \(\text{N}_2\text{D}^+ \)
- DNC
- NH\(_2\text{D} \)
- DC\(_3\text{N} \)
- DCO\(^+ \)
- C\(_3\text{HD} \)
- CH\(_2\text{DCCH} \)
- HD\(_4\text{CS} \)
- c-C\(_3\text{H} \)
- C\(_4\text{H} \)

Characteristics

- High density \(\sim 6 \times 10^7 \) cm\(^{-3} \)
- High-level of depletion
 \[
 f_D = \frac{x(C^{17}O)_{\text{can}}}{x(C^{17}O)_{\text{obs}}} = 16
 \]
- \(T \sim 12-13 \) K
- Mean FWHM = 1.9 km s\(^{-1} \)
- Low deuteration level \(\sim 6 \times 10^{-3} \)
Comparison of the abundances

Dark clouds
Collated by Garrod et al. 2007

Hot core
Mookerjea et al. 2007

Hot corino
Cazaux et al. 2003
Wakelam et al. 2003
Jorgensen et al. 2004
Bottinelli et al. 2007
Stäuber et al. 2011

N-bearing species
Carbon chains
S-bearing

O-bearing and COMs
CygX-N63 is a **nascent hot core**

- N63 is an individual massive Class-0
- Chemical composition intermediate between a dark cloud and a hot core
- Chemically rich but not too much
- Tens of M_\odot of highly depleted material
- Abundances determined for 56 species, including 13 deuterated species

Sarah.Fechtenbaum@obs.u-bordeaux1.fr
Determination of the column densities
Determination of the column densities

- Population diagrams

Population diagram of H^{13}CN
Determination of the column densities

- Population diagrams
- Detection of 37 rare isotopologues

Population diagram of 13CN
Determination of the column densities

• Population diagrams

• Detection of 37 rare isotopologues

• LTE-model of the software CASSIS estimates the opacity

Population diagram of H13CN
Determination of the column densities

- Population diagrams
- Detection of 37 rare isotopologues
- LTE-model of the software CASSIS estimates the opacity
- High density $\sim 10^6 - 10^7$ cm$^{-3}$ => probable LTE
Determination of the column densities

- Population diagrams
- Detection of 37 rare isotopologues
- LTE-model of the software CASSIS estimates the opacity
- High density \(\sim 10^6 - 10^7 \text{ cm}^{-3} \) => probable LTE
- Emission size estimation

Population diagram of H\(^{13}\)CN
Determination of the column densities

- Population diagrams
- Detection of 37 rare isotopologues
- LTE-model of the software CASSIS estimates the opacity
- High density $\sim 10^6 - 10^7 \text{ cm}^{-3}$ => probable LTE
- Emission size estimation
=> Reliable column densities
Determination of the abundances

Global abundances

$\sim 44 \, M_\odot$ in 2500 AU

Duarte-Cabral et al. 2013

\Rightarrow global $n(H_2)$

\Rightarrow Reliable global abundances
Determination of the abundances

Global abundances

~44 M☉ in 2500 AU

Duarte-Cabral et al. 2013

=> global n(H₂)

=> Reliable global abundances

Detailed abundances

• Determination of the emission size

• n(H₂) determined at different r with \(\rho \propto r^{-2} \)
The Cygnus-X region

Search for massive dense cores
PdBI observations

Bontemps et al. 2010

PdBI 3.5 mm
3.2” res. (4500 AU)
PdBI observations

<table>
<thead>
<tr>
<th>CygX-N3</th>
<th>CygX-N12</th>
<th>PdBI 3.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.2” res. (4500 AU)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CygX-N53</th>
<th>CygX-N63</th>
<th>PdBI 1.3 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.1” res. (1500 AU)</td>
</tr>
</tbody>
</table>

Bontemps et al. 2010

<table>
<thead>
<tr>
<th>Observation</th>
<th>Resolution</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PdBI 3.5 mm</td>
<td>3.2” res. (4500 AU)</td>
<td></td>
</tr>
<tr>
<td>PdBI 1.3 mm</td>
<td>1.1” res. (1500 AU)</td>
<td></td>
</tr>
</tbody>
</table>
PdBI observations

CygX-N3

AB configuration
(500 AU)

PdBI 3.5 mm
3.2” res. (4500 AU)

CygX-N53

CygX-N63

PdBI 1.3 mm
1.1” res. (1500 AU)
Comparison of the abundances

![Diagram showing comparison of abundances of various molecules in different high-mass star formation regions.]
Without S-bearing species
Without N-bearing species
Carbon chains
N-bearing species
O-bearing species
S-bearing species
Population diagrams

- Local thermodynamical equilibrium (LTE)
- Optically thin lines
- Negligible CMB
- Size of the emission

\[N_u = W \times \frac{8\pi k \nu^2}{hc^3 A_{ul}} \times C_\tau \]

\[\ln \frac{N_u}{g_u} = \ln N_{\text{tot}} - \ln Q(T_{ex}) - \frac{E_u}{kT_{ex}} \]