High-Mass Star-Forming Clumps with Unusual N_2H^+/HCO^+ Line Ratios

Ian W. Stephens

Boston University

March 19, 2015

- MALT90 overview (Two talks tomorrow!!)
 - ► James Jackson : The MALT90 Molecular Line Survey
 - Yanett Contreras : MALT90: Unveiling Its Treasures
- $\bullet \ N_2 H^+ \ Anomalies \\$
 - ▶ N_2H^+ Poor Sources (Low N_2H^+/HCO^+ ratios)
 - ▶ N₂H⁺ Rich Sources (High N₂H⁺/HCO⁺ ratios)
- Source with two of the most massive protostellar sources: G333.234–00.061

Come by and see my poster: Hubble Observations of Isolated YSOs in the Large Magellanic Cloud

MALT90 Collaborators (partial list)

James Jackson Boston University Scott Whitaker Boston University Patricio Sanhueza Boston University/NAOJ Sadia Hog **Boston University** Jill Rathborne CSIRO Yanett Contreras CSIRO Jonathan Foster Yale Andres Guzman CfA Liverpool John Moores U. Steve Longmore

Over 50 collaborators and in many more countries: Germany, France, Austria, Chile, and Japan

The Millimetre Astronomy Legacy Team 90 GHz (MALT 90) Survey Observing Parameters:

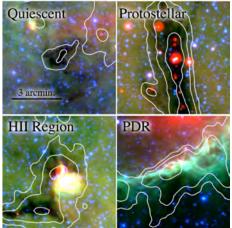
- 16 lines simultaneously
 - High critical densities
 - High-mass star formation tracers
- $3' \times 3'$ maps around ~2000 high-mass sources
- 38" resolution
 - ▶ Clump scale (~1 pc)
- 0.1 km s⁻¹ spectral resolution
- 0.25 K typical noise (T^{*}_A) per channel

ATNF Mopra 22 m

Table 1 Spectral Lines in the MALT90 Survey

Transition	Frequency (MHz)	Tracer
N_2H^+ (1–0)	93173.772	Density, chemically robust
$^{13}CS(2-1)$	92494.303	Optical depth, Column density, V_{LSR}
H41 α	92034.475	Ionized gas
CH ₃ CN 5(0)-4(0)	91987.086	Hot core
HC ₃ N (10-9)	90978.989	Hot core
$^{13}C^{34}S$ (2–1)	90926.036	Optical depth, Column density, V_{LSR}
HNC (1-0)	90663.572	Density; Cold chemistry
HC ¹³ CCN (10–9)	90593.059	Hot core
$HCO^{+}(1-0)$	89188.526	Density; Kinematics
HCN (1-0)	88631.847	Density
HNCO 4(1,3)-3(1,2)	88239.027	Hot core
HNCO 4(0,4)-3(0,3)	87925.238	Hot core
C ₂ H (1-0) 3/2-1/2	87316.925	Photodissociation region
HN ¹³ C (1–0)	87090.859	Optical depth, Column density, V_{LSR}
SiO (1-0)	86847.010	Shock/outflow
$H^{13}CO^+$ (1–0)	86754.330	Optical depth, Column density, V_{LSR}

Jackson et al. (2013)


Table 1 Spectral Lines in the MALT90 Survey

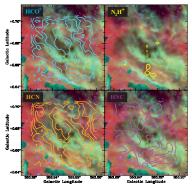
Transition	Frequency (MHz)	Tracer
N_2H^+ (1–0)	93173.772	Density, chemically robust
^{13}CS (2–1)	92494.303	Optical depth, Column density, V_{LSR}
H41 α	92034.475	Ionized gas
CH ₃ CN 5(0)-4(0)	91987.086	Hot core
HC ₃ N (10-9)	90978.989	Hot core
$^{13}C^{34}S$ (2–1)	90926.036	Optical depth, Column density, V_{LSR}
HNC (1-0)	90663.572	Density; Cold chemistry
HC ¹³ CCN (10-9)	90593.059	Hot core
HCO ⁺ (1–0)	89188.526	Density; Kinematics
HCN (1-0)	88631.847	Density
HNCO 4(1,3)-3(1,2)	88239.027	Hot core
HNCO 4(0,4)-3(0,3)	87925.238	Hot core
C ₂ H (1-0) 3/2-1/2	87316.925	Photodissociation region
HN ¹³ C (1–0)	87090.859	Optical depth, Column density, V_{LSR}
SiO (1-0)	86847.010	Shock/outflow
$H^{13}CO^{+}(1-0)$	86754.330	Optical depth, Column density, V_{LSR}

Jackson et al. (2013)

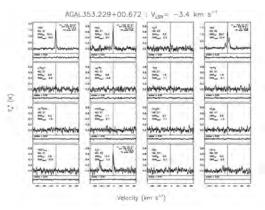
MALT90

Span a large range of evolutionary stages

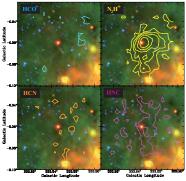
Spitzer 3.6 μ m (blue), 8.0 μ m (green), and 24 μ m (red) Contours: ATLASGAL Over 2000 3' \times 3' maps toward high-mass ATLASGAL (870 $\mu m)$ sources Multiple ATLASGAL sources and velocities per map: 3566 sources

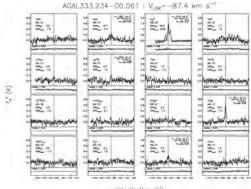

- PDR: 10%
- H II Region: 26%
- Protostellar: 22%
- Quisecent: 19%
- Unknown: 22%

Finding Chart for Interferometers

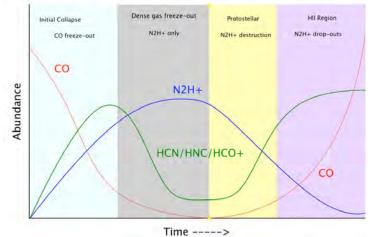

• The Atacama Large Millimeter Array (ALMA)

- ▶ The Brick (Cycle 0 & 1) : Tuesday's talk, Jill Rathborne
- Initial gas structure in a cold, massive clump (Cycle 2)
- The Australian Telescope Compact Array (ATCA)
 - ▶ N₂H⁺ Anomalies (follow-up of Hoq et al. 2013)
 - N₂H⁺ Poor Sources
 - N₂H⁺ Rich Sources


N₂H⁺ Poor Source: G353.229+00.672

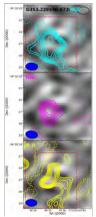

Spitzer 3.6 μ m (blue), 8.0 μ m (green), and 24 μ m (red) MALT90: Contours

N₂H⁺ Rich Source: G333.234–00.061


Spitzer 3.6 μ m (blue), 8.0 μ m (green), and 24 μ m (red) MALT90: Contours

Velocity (km s+')

N_2H^+ Anomalies


Based on chemical models of Lee et al. (2004); see also Bergin (2007)

Follow-up ATCA 3 mm Observations, August 2013

- \bullet Four sources: two N_2H^+ poor, two N_2H^+ rich
- 2.2" resolution
- \bullet Velocity resolution 0.1 km s^{-1} over ${\sim}200$ km s^{-1}
- HCO⁺(1–0), HNC(1–0), N₂H⁺(1–0), ¹³CS(2–1)
- 90 and 93 GHz continuum

N₂H⁺ Poor Source: G353.229+00.672

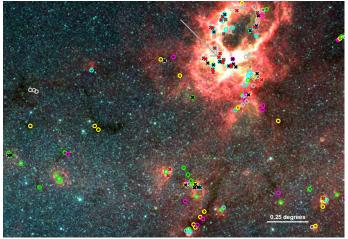
ATCA 3-mm observations

 N_2H^+ Poor Sources

- Not anomalous on small scales
- Must use large-scale (MALT90) observations to assess this anomaly
 - Pick the most reliable N₂H⁺ poor sources (e.g., significantly detected, strongly anomalous, no huge linewidths, not in CMZ, etc.)
 - Compare to large-scale Spitzer images to see global star formation properties

124 Extreme MALT90 $N_2 H^+$ Poor Sources, $I(N_2 H^+)/I(HCO^+) < 0.2$

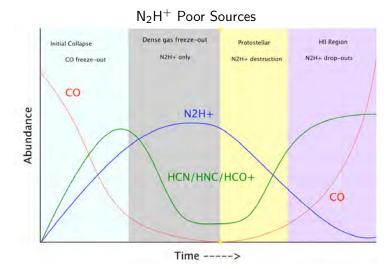
- 41 PDRs (11% of all MALT90 PDRs are N_2H^+ Poor Sources)
- 36 H II regions (4%)
- 5 Protostellar (0.6%)
- 8 Quiescent (1%)
- 34 Unknown (4%)


Generally associated with ionized regions

N_2H^+ Anomalies

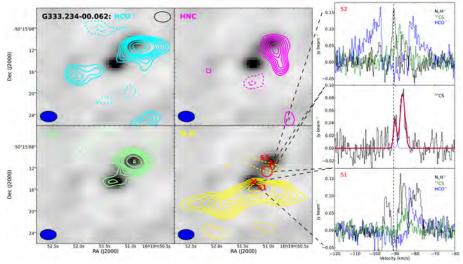
NGC 6357 star formation complex (1.9 kpc).

○ Quiescent ○ Protostellar ○ H II ○ PDR ○ Unknown

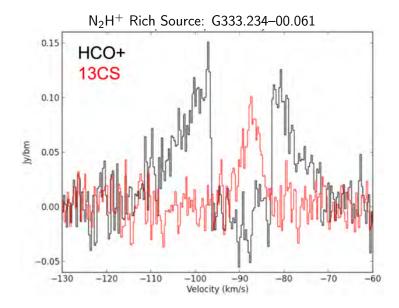

 \times Anomalies (Hoq et al. 2013 criteria) \times Extreme Anomalies I(N_2H^+)/I(HCO^+) < 0.2

Spitzer 3.6 μ m (blue), 4.5 μ m (green), and 8.0 μ m (red)

N_2H^+ Poor Sources

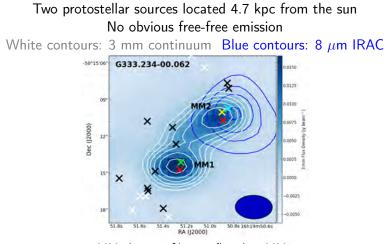

- Associated with PDRs and H II regions
- Particularly prevalent around shells, indicative of PDRs

High-mass N_2H^+ destruction confirmed with the largest dataset to date!


N_2H^+ Anomalies

N₂H⁺ Rich Source: G333.234–00.061

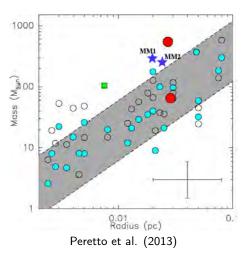
ATCA 3-mm observations


N_2H^+ Anomalies

N_2H^+ Rich Sources

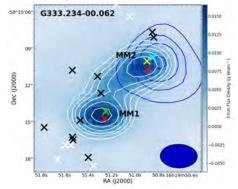
• These are sources with extreme HCO⁺ self-absorption at large-scales.

G333.234–00.061 : Unique N_2H^+ "Rich" Source


MM1 has $\sim 25\%$ more flux than MM2

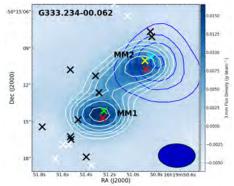
G333.234–00.061 : Unique N_2H^+ "Rich" Source

$$\begin{split} M &= \frac{F_{\nu}^{i}D^{2}}{\kappa_{\nu}B_{\nu}(T_{D})}\\ F_{\nu}^{i} \text{ integrated flux, } D \text{ distance, } \kappa_{\nu} \text{ dust opacity,}\\ B_{\nu}(T_{D}) \text{ Planck function, } T_{D} \text{ temperature}\\ T_{D} &= 100 \text{ K, GDR}{=}100\\ \kappa_{1.3 \text{ mm}} &= 0.90 \text{ cm}^{2} \text{ g}^{-1} \text{ (Ossenkopf), } \beta = 1.5\\ \rightarrow \kappa_{3.3 \text{ mm}} &= 0.22 \text{ cm}^{2} \text{ g}^{-1} \end{split}$$


MM1: >36 M_{\odot} MM2: >29 M_{\odot}

Adopting κ_{ν} for all protostellar sources and using $T_D = 50$ K (Peretto et al. 2013), two of some of the most massive *protostellar* cores known, separated by a projected distance of only 0.12 pc

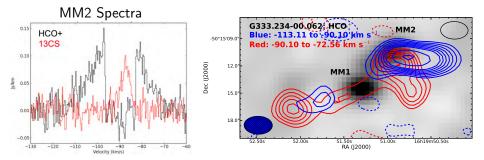
G333.234–00.061 : Unique N₂H⁺ "Rich" Source


MM2 has IRAC emission, and MM1 does not. MM2 is likely hotter.

MM1 is at an earlier evolutionary stage than MM2

G333.234–00.061 : Unique N_2H^+ "Rich" Source

Collisionally Pumped Masers: × 36 GHz class I methanol × 44 GHz class I methanol × 95.1 GHz class I methanol × 22 GHz water Radiatively Pumped Masers: × 6.7 GHz class II methanol × 1.7 GHz OH


Evolutionary sequence (some overlap):

Class I Methanol \rightarrow Class II Methanol \rightarrow Water \rightarrow OH (Forster & Caswell 1989, Ellingsen 2006, Breen et al. 2007):

MM1 is at an earlier evolutionary stage than MM2

Ian W. Stephens (Boston U)

G333.234–00.061 : Unique N_2H^+ "Rich" Source

MM2 has a much more developed outflow MM1 is at an earlier evolutionary stage than MM2

MM1 is at an earlier evolutionary stage than MM2:

(1) MM2 has Spitzer IRAC emission while MM1 does not, suggesting much warmer temperatures for MM2.

(2) MM2 has a large outflow, while MM1 does not have a definitive outflow.

(3) 13 CS has a stronger peak on MM2 even though MM1 is brighter in the continuum, suggesting MM1 could be colder.

(4) The detected maser species for MM1 and MM2 indicate that MM2 is likely at a later evolutionary stage.

MM1 is at an earlier evolutionary stage than MM2 but is more massive. This is unexpected for two sources at a projected distance of only 0.12 pc!!!

Explanation?

- Multiple epochs of massive star formation
- Changes in accretion rates
- MM2 had faster free-fall time
- Unaccounted multiplicity
- Feedback: prestellar cores more massive than star's final mass (e.g., Tan et al. 2014)

Do N_2H^+ "rich" sources (i.e., sources with extreme HCO⁺ self-absorption) show the location of the most massive young stellar objects?

- Indicate locations of extremely high column density
- Line observations advantages over *Herschel* column density maps in finding the most massive sources
 - Separate multiple velocity components
 - Kinematic distances
 - \blacktriangleright Integrated intensity ratio of N_2H^+ and HCO^+ is immune to the beam dilution
- A new method of finding the highest mass protostars?

- N₂H⁺ Anomalies
 - ▶ N₂H⁺ Poor Anomalies arise in ionized regions
 - \blacktriangleright N₂H⁺ Rich Anomalies arise from strong self-absorption in HCO⁺ lines
- G333.234-00.061
 - ► Two of some of some of the most massive cores forming in close proximity (projected distance ~0.12 pc)
 - More massive core is at an earlier evolutionary state!
- Stephens et al. (2015), ApJ, 802, 6