The Water Story in IRDC Clumps

Russell Shipman Luis Chavarrìa Friedrich Wyrowski Floris van der Tak Fabrice Herpin Wilfred Frieswijk

S-RON Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research

Project Overview

- Goal:
 - Determine the physical, dynamical and chemical structure of massive clumps in earliest stages of high-mass star formation.
 - Clarify the water story in outflow and infall components
- Context:
 - Clumps in IRDCs are dense, cold and massive.
 - Sites of ongoing or yet to occur massive star formation
- Method:
 - Observe and model water lines in 2 clumps in 2 IRDCs
 - bright sub-mm positions or strong NH₃ peak positions.
 - Identify trends in line properties between clumps
 - Consistent molecular line modeling using Ratran (Hogerheijde and van der Tak, 2000 A&A 262, 697)

G11.11 positions

Soul of High-Mass Star Formation, Puerto Varas, Chile

G28.34 positions

Soul of High-Mass Star Formation, Puerto Varas, Chile

Targets/Transitions/Continuum

• Strong NH₃ peaks (Pillai et al. 2006)

IRDCs G28.34+0.06 & G11.11-0.12

• Strong sub-mm peaks

Herschel/HIFI (557 GHz) $o-H_2O (1_{10}-1_{01})$ $N_2H^+ (6-5)$ $o-H_2^{18}O (1_{10}-1_{01})$

APEX (330-800 GHz) C¹⁷O (3-2) CO (4-3), (7-6) C³⁴S (7-6) N₂H⁺ (3-2) CH₃OH (7_K-6_K) PACS/SPIRE/SCUBA 70, 100, 160 250, 350, 500 450, 850

Soul of High-Mass Star Formation, Puerto Varas, Chile

5

Water Emission

• All MM peak positions display outflows in H₂O

6

SRON

Water Emission

- All MM peak positions display outflows in H₂O
- The G28 NH₃ position also shows evidence of outflow

G11 NH₃: Absorption only

8

Results of line observations: Dynamic Structures

• Widths and centroids of various species expose different components (Shipman et al. 2014 A&A 570, A51)

Component	Properties	Tracer	
Quiescent outer Envelope	ΔV < 3km/s at systemic	$H_{2}^{18}O, N_{2}H^{+}, C^{17}O$	
Envelope	ΔV 3-7 km/s at systemic	CH ₃ OH, C ³⁴ S, CCH	
Outflow	$\Delta V > 7$ km/s at systemic	H ₂ O emission	
Infall	ΔV 3-7 km/s red shifted	H ₂ O absorption	

- Only MM peaks show CH₃OH
 - RADEX modeling suggests high density and temperature

Proposed Evolution Ordering

Clump	Main Features	Stage	
G28.34 MM	Broadest outflow, multiple methanol transitions, water infall	Most Advanced	
G11.11 MM	Outflow and methanol transitions, water infall	Advanced	
G28.34 NH ₃	Outflow, no methanol, water infall	Young	
G11.11 NH ₃	Only water infall	Youngest: High Mass Prestellar Core	

Structure Modelling

• 1 D spherical model of temperature and density

11

Water absorption: initial results from H¹⁸₂O

- Best model:
 - decreasing abundance interior to clump
 - similar to low mass protostars (Mottram et al., 2013, A&A, 558 A126)
 - contrary to more advanced high mass protostars) (Choi et al 2014, A&A Accepted)

The water story for G28 MM: Initial Results

- H₂O: Red shifted 100% absorption
 - Note: $H_2^{18}O$ <u>does not display infall</u>
- Best model is for a "foreground" cloud
 - Foreground wrt clump dust emission model.
 - Part of the collapsing GMC?

Mottram et al., 2013, A&A, 558 A126

The water story for G11 MM

- Red shifted 100% absorption
- No H₂¹⁸O detected: upper limit
- Initial results
 - Infall may reproduce both
 - The red shifted absorption and the "blue" emission

Conclusions

- We place the clumps into an evolutionary order
 - G28.34 MM: Most advanced
 - G11.11 MM: Advanced
 - G28.34 NH₃: Early stage
 - G11.11 NH₃: Earliest stage a High Mass Starless Core
- Modeling water lines imposes further constraints structure and dynamics
 - G28.34 MM H¹⁸₂O must decrease in abundance deeper in envelope
 - G28.34 MM has outflow plus an infalling foreground cloud
 - G11.11 either Inverse P-Cygni and/or outflow with infalling foreground
- Structure models needed for NH₃ clumps.

Thanks!

Netherlands Organisation for Scientific Research

Infall Rates

Table 8. Mass infall rates at densities from 10⁵ to 10⁷ cm⁻³

Core	Viel	R [pc]	105	100	107
G28-NH ₃	2.0	0.05	3.6×10^{-4}	3.6×10^{-3}	3.6×10^{-2}
G28-MM	0.35	0.1 *	2.5×10^{-4}	2.5×10^{-3}	2.5×10^{-2}
G11-NH ₃	0.8	0.04	9.2×10^{-4}	9.2×10^{-4}	9.2×10^{-3}
G11-MM	1.15	0.04 *	1.3×10^{-4}	1.3×10^{-3}	1.3×10^{-2}

Notes. Infall velocity in km s⁻¹, Radius of compact cores from interferometric observations in pc, Mass infall rate in M_{\odot}/yr . ^(a) Chen et al. (2010) ^(b) Core size assumed same a G11-MM ^(c) Gómez et al. (2011)

(Shipman et al. 2014 A&A 570, A51)

- Sizes of cores from interferometric observations
- 10⁻⁴ to 10⁻² Msun/yr

Next Steps

- Modeling the lines constrains the structure and dynamics
- Consistent water story
 - Satisfy both H_2O and $H_2^{18}O$
- CO 4-3
 - redshifted absorption
 - Very similar to H₂O
 - Perhaps "outflows" are a combination of real outflows and infall.

Initial results for G11 MM outflow

- One broad line in CO (4-3):
 - 9.32 km/s, 5.2 K
- CO Column density (Radex 200K and 3e4)
 1.7 10¹⁶ cm⁻²
- CO/H₂ ~ 10⁻⁴
- H₂O Column density(27.8 km/s, Δv 9.1 km/s)
 0.4 10¹⁴ cm⁻²
- Abundance wrt H₂

◆ 2.35 10⁻⁷

Initial results for G28 MM outflows

- Two broad lines: \bullet
 - 32 km/s, 1.2 K
 - 9.4 km/s, 5.8 K
- Radex Column (200K and 3e4) •
 - **1.3 10**¹⁶
 - **1.9 10**¹⁶
- $CO/H2 \sim 10^{-4}$ •
- Column H₂O •
 - 3 10¹⁴
 - 1.1 10¹⁴
- Abundance •
 - 2.3 10⁻⁶

 - 5 10⁻⁷

Water Absorption: Initial Results from H¹⁸₂O

• H¹⁸₂O in absorption narrow at systemic velocity

- $H_2^{18}O$ leads to H_2O abundances (assuming O/18O of 500):
 - G28MM 0.3 10⁻⁸
 - G28NH₃ 4 10⁻⁸
 - G11MM <0.2 10⁻⁸
 - **G11NH**₃ 3 10⁻⁸
- Similar to findings of low and high mass protostars

Modeling the absorption suggests decreasing abundance interior to clump (similar to low mass protostars (Mottram et al., 2013, A&A, 558 A126) contrary to more advanced high mass protostars) (Choi et al 2014, A&A Accepted)

Soul of High-Mass Star Formation, Puerto Varas, Chile

22

• APEX: C¹⁷O (3-2), N₂H⁺ (3-2), not shown CO (4-3), CO (7-6), C³⁴S (7-6), CH₃OH (7_{κ}-6_{κ})

Data

CO (4-3) of G28 clumps

G28 NH₃

G28 MM

