The Water Story in IRDC Clumps

Russell Shipman
Luis Chavarria
Friedrich Wyrowski
Floris van der Tak
Fabrice Herpin
Wilfred Frieswijk
Project Overview

• Goal:
 • Determine the physical, dynamical and chemical structure of massive clumps in earliest stages of high-mass star formation.
 • Clarify the water story in outflow and infall components

• Context:
 • Clumps in IRDCs are dense, cold and massive.
 • Sites of ongoing or yet to occur massive star formation

• Method:
 • Observe and model water lines in 2 clumps in 2 IRDCs
 • bright sub-mm positions or strong NH$_3$ peak positions.
 • Identify trends in line properties between clumps
 • Consistent molecular line modeling using Ratran (Hogerheijde and van der Tak, 2000 A&A 262, 697)
G11.11 positions
G28.34 positions
Targets/Transitions/Continuum

IRDCs G28.34+0.06 & G11.11-0.12
- Strong NH$_3$ peaks (Pillai et al. 2006)
- Strong sub-mm peaks

Herschel/HIFI
(557 GHz)
o-H$_2$O ($^{1}_{10}$-$^{1}_{01}$)
N$_2$H$^+$ (6-5)
o-H$_2^{18}$O ($^{1}_{10}$-$^{1}_{01}$)

APEX
(330-800 GHz)
C17O (3-2)
CO (4-3), (7-6)
C34S (7-6)
N$_2$H$^+$ (3-2)
CH$_3$OH (7_{K}-6_{K})

PACS/SPIRE/SCUBA
70, 100, 160
250, 350, 500
450, 850
Water Emission

- All MM peak positions display outflows in H_2O
Water Emission

- All MM peak positions display outflows in H$_2$O
- The G28 NH$_3$ position also shows evidence of outflow
G11 NH$_3$: Absorption only
Results of line observations: Dynamic Structures

- Widths and centroids of various species expose different components
 (Shipman et al. 2014 A&A 570, A51)

<table>
<thead>
<tr>
<th>Component</th>
<th>Properties</th>
<th>Tracer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent outer Envelope</td>
<td>$\Delta V < 3 \text{km/s at systemic}$</td>
<td>$\text{H}_2^{18}\text{O}, \text{N}_2\text{H}^+, \text{C}^{17}\text{O}$</td>
</tr>
<tr>
<td>Envelope</td>
<td>$\Delta V 3-7 \text{ km/s at systemic}$</td>
<td>$\text{CH}_3\text{OH}, \text{C}^{34}\text{S}, \text{CCH}$</td>
</tr>
<tr>
<td>Outflow</td>
<td>$\Delta V > 7 \text{ km/s at systemic}$</td>
<td>$\text{H}_2\text{O emission}$</td>
</tr>
<tr>
<td>Infall</td>
<td>$\Delta V 3-7 \text{ km/s red shifted}$</td>
<td>$\text{H}_2\text{O absorption}$</td>
</tr>
</tbody>
</table>

- Only MM peaks show CH_3OH
 - RADEX modeling suggests high density and temperature
Proposed Evolution Ordering

<table>
<thead>
<tr>
<th>Clump</th>
<th>Main Features</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28.34 MM</td>
<td>Broadest outflow, multiple methanol transitions, water infall</td>
<td>Most Advanced</td>
</tr>
<tr>
<td>G11.11 MM</td>
<td>Outflow and methanol transitions, water infall</td>
<td>Advanced</td>
</tr>
<tr>
<td>G28.34 NH$_3$</td>
<td>Outflow, no methanol, water infall</td>
<td>Young</td>
</tr>
<tr>
<td>G11.11 NH$_3$</td>
<td>Only water infall</td>
<td>Youngest: High Mass Prestellar Core</td>
</tr>
</tbody>
</table>
Structure Modelling

- 1 D spherical model of temperature and density
Water absorption: initial results from H_2^{18}O

- Best model:
 - decreasing abundance interior to clump
 - similar to low mass protostars (Mottram et al., 2013, A&A, 558 A126)
 - contrary to more advanced high mass protostars) (Choi et al 2014, A&A Accepted)
The water story for G28 MM: Initial Results

- H_2O: Red shifted 100% absorption
 - Note: H_2^{18}O does not display infall
- Best model is for a “foreground” cloud
 - Foreground wrt clump dust emission model.
 - Part of the collapsing GMC?

Mottram et al., 2013, A&A, 558 A126
The water story for G11 MM

- Red shifted 100% absorption
- No H_2^{18}O detected: upper limit
- Initial results
 - Infall may reproduce both
 - The red shifted absorption and the “blue” emission
Conclusions

- We place the clumps into an evolutionary order
 - G28.34 MM: Most advanced
 - G11.11 MM: Advanced
 - G28.34 NH$_3$: Early stage
 - G11.11 NH$_3$: Earliest stage a High Mass Starless Core

- Modeling water lines imposes further constraints structure and dynamics
 - G28.34 MM H$_2^{18}$O must decrease in abundance deeper in envelope
 - G28.34 MM has outflow plus an infalling foreground cloud
 - G11.11 either Inverse P-Cygni and/or outflow with infalling foreground

- Structure models needed for NH$_3$ clumps.
Thanks!
Infall Rates

- Range of Densities
- Sizes of cores from interferometric observations

10^{-4} to 10^{-2} Msun/yr

Table 8. Mass infall rates at densities from 10^5 to 10^7 cm^{-3}

<table>
<thead>
<tr>
<th>Core</th>
<th>V_{inj}</th>
<th>H [pc]</th>
<th>10^5</th>
<th>10^6</th>
<th>10^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28-NH₃</td>
<td>2.0</td>
<td>0.05</td>
<td>3.6x10^{-4}</td>
<td>3.6x10^{-3}</td>
<td>3.6x10^{-2}</td>
</tr>
<tr>
<td>G28-MM</td>
<td>0.35</td>
<td>0.1</td>
<td>2.5x10^{-4}</td>
<td>2.5x10^{-3}</td>
<td>2.5x10^{-2}</td>
</tr>
<tr>
<td>G11-NH₃</td>
<td>0.8</td>
<td>0.04</td>
<td>9.2x10^{-5}</td>
<td>9.2x10^{-4}</td>
<td>9.2x10^{-3}</td>
</tr>
<tr>
<td>G11-MM</td>
<td>1.15</td>
<td>0.04</td>
<td>1.3x10^{-4}</td>
<td>1.3x10^{-3}</td>
<td>1.3x10^{-2}</td>
</tr>
</tbody>
</table>

Notes. Infall velocity in km s^{-1}, Radius of compact cores from interferometric observations in pc, Mass infall rate in M_{\odot}/yr.

(a) Chen et al. (2010) (b) Core size assumed same a G11-MM (c) Gómez et al. (2011)

(Shipman et al. 2014 A&A 570, A51)
Next Steps

• Modeling the lines constrains the structure and dynamics
• Consistent water story
 – Satisfy both H_2O and H_2^{18}O
• CO 4-3
 – redshifted absorption
 – Very similar to H_2O
 – Perhaps “outflows” are a combination of real outflows and infall.
Initial results for G11 MM outflow

- One broad line in CO (4-3):
 - $9.32 \text{ km/s, } 5.2 \text{ K}$
- CO Column density (Radex 200K and 3e4):
 - $1.7 \times 10^{16} \text{ cm}^{-2}$
- CO/H$_2$ $\sim 10^{-4}$
- H$_2$O Column density (27.8 km/s, Δv 9.1 km/s):
 - $0.4 \times 10^{14} \text{ cm}^{-2}$
- Abundance wrt H$_2$
 - 2.35×10^{-7}
Initial results for G28 MM outflows

- Two broad lines:
 - 32 km/s, 1.2 K
 - 9.4 km/s, 5.8 K
- Radex Column (200K and 3e4)
 - 1.3×10^{16}
 - 1.9×10^{16}
- CO/H$_2$ $\sim 10^{-4}$
- Column H$_2$O
 - 3×10^{14}
 - 1.1×10^{14}
- Abundance
 - 2.3×10^{-6}
 - 5×10^{-7}
Water Absorption: Initial Results from H$_2^{18}$O

- H$_2^{18}$O in absorption narrow at systemic velocity
 - H$_2^{18}$O leads to H$_2$O abundances (assuming O/18O of 500):
 - G28MM 0.3×10^{-8}
 - G28NH$_3$ 4×10^{-8}
 - G11MM $<0.2 \times 10^{-8}$
 - G11NH$_3$ 3×10^{-8}
 - Similar to findings of low and high mass protostars

Modeling the absorption suggests decreasing abundance interior to clump (similar to low mass protostars) (Mottram et al., 2013, A&A, 558 A126) contrary to more advanced high mass protostars (Choi et al 2014, A&A Accepted)
Data

- HIFI: $\text{H}_2\text{O} (1_{01}-1_{00}), \text{N}_2\text{H}^+ (6-5), \text{o-H}_2^{18}\text{O} (1_{01}-1_{00})$ (Shipman et al., 2014, A&A 570, A51)
- APEX: $\text{C}^{17}\text{O} (3-2), \text{N}_2\text{H}^+ (3-2)$, not shown $\text{CO} (4-3), \text{CO} (7-6), \text{C}^{34}\text{S} (7-6), \text{CH}_3\text{OH} (7_{K-6K})$
CO (4-3) of G28 clumps

G28 NH$_3$

G28 MM