DNC/HNC Ratio in Molecular Clumps

<u>Takeshi Sakai</u>¹, Nami Sakai², Kenji Furuya³, Yuri Aikawa⁴, Tomoya Hirota⁵, Jonathan Foster⁶, Patricio Sanhueza⁵, James M. Jackson⁷, Satoshi Yamamoto²

1. The University of Electro-Communications, 2. The University of Tokyo, 3. Leiden Observatory, 4. Kobe University, 5.NROJ, 6. Yale University, 7. Boston University

Cluster formation

- Most of stars (~90 %) are born in clusters (Lada & Lada 2003).
 - How do clumps fragment into small cores?
 - How and when is the mass of each cluster member determined?
 - How does star formation activity affect fragmentation?
 - Is there diversity of cluster formation mechanism?

Deuterium Fractionation

Molecules are highly deuterated in molecular clouds.

 $H_3^+ + HD \longrightarrow H_2D^+ + H_2 + 230 \text{ K}$ $CH_3^+ + HD \longrightarrow CH_2D^+ + H_2 + 370 \text{ K}$ $C_2H_2^+ + HD \longrightarrow C_2HD^+ + H_2 + 550 \text{ K}$

• CO depletion (< ~20 K).

 $H_2D^+ + CO \rightarrow HCO^+ + HD$

Deuterium Fractionation H_2D^+/H_3^+

Deuterium Fractionation N_2D^+/N_2H^+

 N_2D^+/N_2H^+ , as well as H_2D^+/H_3^+ , is sensitive to the "current" temperature.

Deuterium Fractionation DNC/HNC

DNC/HNC ratio does not rapidly decrease after the onset of star formation.

Single-dish Survey of DNC/HNC toward Molecular Clumps

- Nobeyama 45 m
 - DNC J=1-0 (76 GHz)
 - HN¹³C J=1-0 (87 GHz)
 - Beam size ~20"

- Targets
 - IRDCs: starless (24 μm dark) & star-forming (24 μm source)
 - Rathborne et al. 2006;Sridharan et al. 2005; Beuther et al. 2002
 - HMPOs
 - Sridharan et al. 2002; Beuther et al. 2002

Survey of DNC/HNC with NRO 45 m

(Sakai et al. 2012, ApJ)

G34.43+00.24 MM3

- The third most massive clump in G34.43+00.24 (Rathborne et al. 2006)
- Distance
 - 1.56 kpc (VLBI: Kurayama et al. 2011)
 - 3-4 kpc (kinetic distance or extinction; Foster et al. 2012)
- Mass
 - ~30 M_{sun} (D=1.56 kpc)
 - ~171 M_{sun} (D=3.7 kpc)
 - Rathborne et al. 2010
- ALMA cycle 0
 - Band 6 and Band 7
 - Antenna
 - 23-26
 - Beam size: ~0.8"

Garay et al. 2004; Rathborne et al. 2005, 2006; Sanhueza et al. 2010 ; Ashley Barnes's talk

Results DNC and HN¹³C

 The DNC emission is more extended than the HN¹³C emission.

Results DNC, HN¹³C and CH₃OH

- HN¹³C -> Hot core
- DNC -> Extended around the hot core

Results DNC, HN¹³C, CH₃OH and CS

- The DNC peaks are offset from the CS peaks.
 - Shock chemistry does not affect to the formation of DNC.

Results DNC, HN¹³C, CH₃OH, CS and N₂H⁺

No N₂H⁺ emission near the hot core.
 - N₂H⁺ + CO -> HCO⁺ + H₂

Difference between single-dish and ALMA observations

- The DNC emission is stronger than the HN¹³C emission.
 - Apparently inconsistent with the single-dish results.

Difference in Critical Density

- NRO 45 m
 - DNC & HN¹³C J=1-0
 - $n_{\rm cr} \simeq 10^5 \, {\rm cm}^{-3}$
- ALMA
 - DNC & HN¹³C J=3-2
 - $n_{\rm cr} \simeq 10^7 \, {\rm cm}^{-3}$

Model Calculation Results

Summary: DNC/HNC in G34.43+00.24 MM3

Low Density Envelope (~10⁴⁻⁵ cm⁻³) DNC/HNC (~0.003)

Summary: DNC/HNC in G34.43+00.24 MM3

Origin of Diversity of DNC/HNC

Filling factor of dense regions

Origin of Diversity of DNC/HNC

 In any cases, different DNC/HNC ratio suggests different history of the cluster formation.

Summary

- DNC/HNC
 - can be high in warm regions.
 - depends on density.
 - Multi-transition line observations
 -> ALMA Band 2 (70 GHz-band)
- Diversity of DNC/HNC

 Diversity of cluster
 formation?

High resolution observations are crucial.

Sakai et al. 2015, ApJ, accepted

Summary: DNC/HNC in G34.43+00.24 MM3

DNC/HNC toward the Hot Core

- HN¹³C
 - Hot core (> 90 K)
- DNC
 - Offset from the hot core

Chemical Model Calculations

Chemical Model Calculations

• Temperature rises from 10 K to a given temperature at a given time.

o/p ratio

Interaction between the Outflow and Ambient Gas

Channel maps of N₂H⁺ J=3-2 and CS J=5-4

- The outflow is penetrating into cold gas
- The outflow should be very young.

278 GHz Class I Methanol Masers (Yanagida, Sakai, Hirota et al. 2014, ApJL)

• $CH_3OH J_{K} = 9_{-1} - 8_0$: shock excited maser

Results: Keck

