The accretion-ejection connexion in Herbig Ae/Be stars

Catherine Dougados

UMI-FCA Dept. Astronomia, Universidad de Chile Santiago & Institut de Planétologie et d'Astrophysique de Grenoble

R. Martinez, S. Casassus, D. Mardones (UdeChile)

V. Agra-Amboage (Porto univ.), S. Cabrit (Obs. Paris), J. Ferreira, D. Coffey (Dublin Univ.), M. Benisty (IPAG) L.Podio (INAF) L. Ellerbroek, E. Whelan (Tubingen Univ.), S. Brittain, C. Adams (Clemson Univ.)

DEPARTAMENTO DE ASTRONOMÍA Facultad de Ciencias Físicas y Matemáticas UNIVERSIDAD DE CHILE

The accretion-ejection connexion

Correlation F_{CO}, FH₂ vs L_{bol}

Collimated jets up to L_{bol} = a few 10⁵ L_O (30 M_O ZAMS) for tdyn < 10⁴ yrs e.g. Kraus et al. 2010 Cesaroni et al. 2007 Guzman et al. 2010, 2012 ...

Same ejection mechanism up to $20 M_{\odot}$?

Low-mass atomic jets

Ray et al. (1997)

Current observational constraints:

- ✤ R₀ < 5 au</p>
- Small collimation scale < 30 au</p>
- does not depend on evolution

Ray, Dougados et al. 2007 PPV, Cabrit 2007

Carrasco-Gonzalez et al 2010, Science **330**, 1209 (2010)

Low mass case: the role of Bstar and/or Bdisk

Magneto-centrifugal ejection

Blandford & Payne 1982

Zanni & Ferreira 2013

Magnetic Disk winds

Ferreira, Dougados, Cabrit 2006

 Reproduce collimation, kinematics mass flux of TTs jets

BUT

- cannot account for low vsini
- require large disk magnetization
 (µ ≈ 1)

Ferreira 1997 see e.g. Stepanovs et al. (2014) for recent numerical simulations

Herbig Ae/Be stars

HAeBe2014@eso.org www.eso.org/haebe2014

> April 7 - 11 Santiago Chile

The missing link in star formation

The workshop will take place in honour of the life and works of George H. Herbig

Optically revealed 1-8 M
 PMS stars: system well constrained

- \clubsuit Direct constraints from R_{\star} up to large scales
- \diamond Different internal structure (expected different B_{\star})

(Stellar) Magnetic fields in Herbig stars

< 10 % of Herbig Ae/Be stars with kG large scale magnetic fields Wade et al. 2007, Alecian et al. 2013, similar to MS Ap/Bp stars + decrease of magnetic flux with age Fossil field origin ?

BUT

- B=100-500 G required to form accretion funnels at Mac=10⁻⁸ Msun/yr Wade et al 2007, Bessolaz et al 2008, Hubrig et al. 2009,2013
- Detection of 100 G field in 2 O MS stars Fossati et al. (2015)

Jets around Herbig stars

- Spectroscopic evidence: rare but observational bias (Fe+ > 50% in embedded masisve YSOs, cf posters)
- When detected: properties very similar to TTS jets

Perrin et al. (2007) Corcoran & Ray (1998) Melnikov et al. (2008) Whelan et al. (2010) Ellerbroek et al. (2013, 2014) Reiter & Smith (2014)

Dust in atomic jets ?

- Jet launch accompanied by dust occultation events and NIR flares
 - dust lifted in outer streamlines of disk wind ? Podio et al. (2009), Agra-Amboage et al. (2011)
 - No B* detected (dipolar < 50 G) Alecian et al 2014</p>

 \rightarrow Origin in disk wind ?

Do jets rotate ?

 Rotation detections in TTs jets at limit of current instrumentation e.g Coffey et al. (2015)

Vφ propto Mstar^{1/2} easier to measure in more massive jets

Small scale wide molecular flows

HH 30 Pety et al. 2006

High-mass

Orion source I Vaidya & Goddi 2013

Outer streamlines of MHD disc wind r₀ > 1 AU Panoglou et al 2012 Crucial tests to be performed with ALMA (angular momentum) wide-angle wind component ?

Probing the central engine: the HI lines

HI Brγ - Macc correlation

van den Acker 2005, Garcia-Lopez et al. 2006 Donehew & Brittain 2011

Break at A0/B9 SpT ?

Probing sub-au scales

milli-arcsecond angular resolution

Spectro-astrometry

Spectro-interferometry

Kraus 2014

20-30 µas precision on relative photocenter displacement

Inner keplerian gaseous disk

V921 Sco (Be) CRIRES/VLT+AMBER/VLTI Kraus et al. (2012) HI Brγ originates from a keplerian gaseous disk inside Rsub

also Eisner et al (2010)

Formation in inner (disk?) winds

also: Weigelt et al. (2011), Garcia-Lopez et al. (2015), Rousselet-Peraut (2010)

Summary

Low-mass T Tauri stars: atomic jets launched from inner AU regions MHD disc winds most promising scenario but

 \diamond don't account for TTs low rotation rates

 \diamond may pose pbs to disk physics

□ Jets from intermediate-mass Herbig stars

- more rare than T Tauri case (observational bias ?)
- very similar properties to TTs jets
- weaker Bstar

Seem to support disk-wind origin but low statistics yet !

Next:

- Statistical studies of jet signatures vs stellar/disk properties
- Linking all scales on a few sources

Global view over the whole stellar mass spectrum is highly desirable !

Many Thanks to

R. Ramirez, S. Casassus, D. Mardones, G. Garay (Dept. astronomia Universidad de Chile) A. Dunhill, J. Cuadra (PUC Santiago) A. Hales (Alma-Santiago)

P. Garcia, V. Agra-Amboage (Porto) E.Whelan (Tubingen) S. Brittain, C. Adams (Clemson Univ. USA) S. Alencar, G. Lima (Belo Horizonte Brasil) M. Bonnefoy (MPIA-Heidelberg) L. Ellerbroek (Amsterdam)

S. Cabrit (LERMA/Obs. Paris) J. Ferreira, J. Bouvier, M. Benisty, K. Rousselet-Perraut, J. Bouvier (IPAG) J.F. Donati (OMP)

Magnetospheric accretion in T Tauri stars

Magnetospheric cavity: a few Rstar < 0.1 AU

© L. Hartmann

Rtrunc = f(Bstar,Macc) ≈ Rcor

Camenzind 1990 Edwards et al. 1994 Hartmann et al. 1994

Jets in Herbig Stars

Embedded B star (ZCMa-Be) driving collimated jet

Whelan et al. (2010)

The Accretion-Ejection connexion

Class 0 Protostar

Class II Disk only

Evolved Class I Protostar

 ♦ Universal accross evolutionary stages dMjet/dt/dMac/dt ≈ 0.1
 Accretion-Powered

Hartigan et al. 1995; Antoniucci et al. 2008

Universal in Mstar: from 24
 Mjup to 20 M_☉

MHD Disk winds: A natural outcome of disk physics ?

rho

rho

rho

♦ Expectations from both numerical simulations of collapse and of MRI in disks (→ disk wind)

Impact for transport of angular momentum

Magneto-centrifugal wind can play a major role in angular momentum transport from r= 0.3-5-10 AU Bai et al. 2013, Bai & Stone 2011 see also Baruteau et al. 2014 PPVI

Rotation measurements in Jets ?

OBSERVATIONS

MODELS

Transverse ΔV = 10-15 km/s observed in 6 T Tauri jets with HST/STIS Rotation signatures in jet body ?
Bacciotti et al. (2002) Coffey et al (2004, 2007) Woitas et al (2003)

2- The origin of HI lines

Spectrally resolved interferometric observations (R=5000, 10⁴)

AB Aur VEGA/CHARA observations in H α (Rousselet-Peraut et al 2010) modelling with 2D radiative transfer of disk wind

Lima, Rousselet, Dougados et al. in prep

Variation of V across $H\alpha$

See also: Benisty et al (2010) Weigelt et al. (2011) Be stars