ALMA reveals a candidate to hot accretion disk around the O-type protostar IRAS 16547-4247

Luis Zapata Centro de Radioastronomía y Astrofísica Universidad Nacional Autónoma de México (UNAM) México

Collaborators

Guido Garay – UdeC, Chile Aina Palau – UNAM, México Luis F. Rodríguez – UNAM, México Jim Moran – CfA, USA Ramiro Franco –UdeG, México Roberto Galvan –UNAM, México

Two modes for the massive star formation.

-> Throughout disks and outflows as low mass stars.

-> Mergers of low- and intermediate- mass young stars in dense clusters.

-> or both... (e.g. Orion KL)

MHD simulations Disks around high-mass stars

Krumholz et al. (2009) Kuiper et al. (2010) Peters et al. (2010)

Note the sizes of the massive disks

Some observational cases of disks around massive stars

Zapata et al. (2009) Zapata, Tang and Leurini (2011) Goddi et al. (2015) Fernández-López et al. (2011) Carrasco-González et al. (2014) Girart et al. Qiu, Zhang et al.

Mergers of low- and intermediate- mass young stars in dense clusters. MHD Simulations

Ian Bonnell, Matthew Bate, et al.

-5°21'00''

-5°22'00''

-5°23'00''

5^h35^m15^s

Merge of massive protostars?

Zapata et al. (2009)

Before formation of non-hierarchical multiple of massive stars

Mergers...

Massive non-hierarchical system of massive protostars. Before dynamic decay

Bally and Zinnecker (2005); Reipurth (2000)

Following dynamic decay

What we are looking for? Our dreams about disks around massive stars...

Dec (J2000)

Pineda et al. (2014)

FIG. 4.— PV diagram of CO (3–2) along the major axis shown in Fig. 3. Contours are shown at $[3,6,12,24,48,96] \times \text{rms}$, where rms is 27 mJy beam⁻¹ per channel. Negative contours are shown by dashed lines. Orange and red curves show the expected keplerian velocity for a central star of $2.4 \,\text{M}_{\odot}$ and inclination angle of 30° and 40°, respectively. See Section 4.4 for discussion.

IRAS 16547-4247: A young O-type Star.

At a distance of 2.9 kpc, it has a bolometric luminosity of 6.2 x $10^4 L_{sun}$, equivalent to that of a single O8 zero-age main-sequence star.

ALMA – Atacama Larger Millimeter Array Telescope → Chile 66 Antenna Array

IRAS 16547- ALMA

Detected spectral lines in IRAS 16547

Freq (GHz)

Table 1. Transitions detected toward IRAS 16547

Molecule	Transition	Rest Freq. (GHz)	$S_{ij}{}^1\mu^2$ (D ²)	Е _и (К)
$SO_2 v=0$	184,14-183,15	338.30599	26.81	197
	$20_{1,19} - 19_{2,18}$	338.61181	26.02	199
	282,26-281,27	340.31641	32.05	392
	53.3-42.2	351.25722	7.32	36
$SO_2 v_2 = 1$	43,1-32,2	338.34874	7.07	792
	82,6-71,7	338.37638	5.09	803
$^{34}SO_2 v=0$	$13_{2,12} - 12_{1,11}$	338.32036	13.59	93
$^{33}SO_2 v=0$	84,4-83,5, F=19/2-19/2	351.17796	11.16	73
	9 _{4,6} -9 _{3,7} , F=21/2-21/2	351.28137	12.88	81
	19 _{4,16} –19 _{3,17} , F=41/2–41/2	353.74156	25.37	217
SO ¹⁸ O	$20_{0,20} - 19_{1,19}$	338.63882	43.41	184
OCS	28–27	340.44927	14.32	237
HNCS a-type	30 _{1,30} -29 _{1,29}	351.22743	80.60	324
SO ¹⁷ O	$20_{1,20} - 19_{0,19}$	353.62533	263.56	186
CH ₃ SH	14 ₁₃ –13 ₁₃ –/+A	353.41736	3.32	864
	14 ₁₃ –13 ₁₃ E	353.43107	3.33	863
	149-139 -/+A	353.67282	14.10	479
	14 ₂ -13 ₂ -A	353.72626	23.60	147
	14 ₈ -13 ₈ -/+A	353.73446	16.20	406
	14 ₈ –13 ₈ E	353.74153	16.27	408
	147–137 E	353.77778	18.11	341
	14_7-13_7 E	353.78050	18.11	342

Three classes of the line emission depending on the excitation temperature in the upper levels.

CH₃OH -- ALMA

Higuchi et al. (2014)

Low temperatures in the upper levels (about 100 K)

 $SO_2 / OCS -- ALMA$

-28

-30

-32

-34

-28

-30

-32

-34

VRAD

0

VRAD

0

SO₂ -- SMA

Temperatures in the upper levels (about 200 K)

Candidate to Rotating Disk around an O-type (proto)star

Candidate to Rotating Disk around an O-type (proto)star

Pros:

- 1. Very compact rotating molecular structure (about 1000 AU)
- 2. Elongated perpendicular to the radio jet and molecular outflow
- 3. Traced by highly excited complex molecules

Cons:

1. No Keplerian motions at all in the innermost parts