Rotation, disks and infall in High-Mass Star Formation:

Henrik Beuther

Conceptual ideas

Courtesy of Rolf Kuiper

Potential tracers

- (sub)mm continuum
- (sub)mm thermal spectral lines
- maser emission (mainly CH₃OH ?)
- near-infrared imaging
- near-/mid-infrared interferometry
- near-infrared spectroscopy

Talk bias: Only observational constraints, no theory.

Topics

- Pre-2010 Townsville Meeting
- Where do we see rotational signatures first?
 - Rotation and collapse on many scales
 - State of the art with SMA, PdBI and ALMA
 - State of the art in the near-infrared

Disks around B-type protostars

Disks around B-type objects with Keplerian rotation established.
Famous example IRAS20126+4104, work by *Cesaroni et al., Keto & Zhang 2010, Johnston et al. 2011, Surcis et al. 2014, Moscadelli et al. 2011 ... and more*

- Other examples exist for B-type objects

→ But what about more massive stars?

A sample of 12 massive disk candidates

Beuther, Walsh & Longmore 2009

Accretion through HCHII regions

Keto 2002, 2003, Keto & Klaassen 2008

CH₃OH maser disk

Strongly debated whether the masers trace a disk or outflow
 The model favors the differentially rotating disk around a 30M_{sun} star.

Pestalozzi et al. 2009

Hot molecular disks at 2.3µm in CO

Model

Modeled with hot (1500 to 4500K) Keplerian disk in the inner few AU. Bik & Thi <u>2004</u>

Topics

- Pre-2010 Townsville Meeting
- Where do we see rotational signatures first?
 - Rotation and collapse on many scales
 - State of the art with SMA, PdBI and ALMA
 - State of the art in the near-infrared

Hierarchical fragmentation in high-mass star-f.

Multiple velocity components

Linewidth Δv between 0.3 and 1.3km/s

Beuther et al. in prep.

Rotation at the earliest evolutionary stages

Infall and rotation around NGC7538IRS1

Fragmentation of the inner disk in NGC7538IRS1

Beuther et al. 2013

I. NGC7538 IRS1: an accreting O-type Star

Two accretion disks around two massive YSOs in the cavity of a rotating circumbinary envelope

Goddi, Zhang, & Moscadelli, 2015, A&A, 573, 108

Subarsecond SMA study of G023.01

- CH₃CN traces disk & outflow
- Outflow Hubble law
- Rotation consistent with dyn. mass 19M_{sun}

Sanna et al. 2014

Multiple disks within filaments

- Filamentary chain of cores

- Rotation signatures consistent with Keplerian rotation around 4-18M_{sun} stars

Sanchez-Monge et al. 2013, 2014, see also Beltran et al. 2014

A precessing disk/jet system

See talk by Luis Zapata

Zapata et al. 2015, see also Higuchi et al. 2015

ALMA observations of AFGL4176

→ See talk by Katharine Johnston

Johnston et al. in prep.

Magnetic disk/outflow system

G240.31+0.07

Magnetic field, disk and outflow system consistent with low-mass picture.

Qiu et al. 2014

NIR interferometric disk imaging

Kraus et al. 2010

Mid-infrared interferometry Visibilities

Best fit models

- MIR can trace disks and outflows, often hard to disentangle

Boley et al. 2013

NIR spectroscopy

- 2.3µm CO bandhead emission of 20 MYSOs
 - \rightarrow emission fitted assuming Keplerian disk
 - → Data fitted with geometrically thin disks within dust sublimation radius on AU scales.

Fragmentation and disk formation during high-mass star formation

Survey (PI: H. Beuther):

- Large sample of high-mass star-forming regions
- 0.2" ~ 500AU
- (sub)mm line and continuum emission
- >300 hours large program at PdBI
- Only large program in that field

Fragmentation and disk formation during high-mass star formation

PdBI large program CORE: 1.3mm continuum emission of sample. Usually 0.5 D-tracks per source

△ Dec. (")

Summary

- Disks around early B-stars well established
- More difficult in O-star regime
- Early interesting examples of disk candidates in 20M_{sun} regime
- However statistics still poor
- Multi-wavelength approach likely to be very important

- Lots to come in the field with NOEMA, ALMA, JWST, MATISSE

Hirarchical fragmentation

Rotation, Infall and Outflow motions

Beltran et al. 2006, 2007

Infall and outflow at 400AU scales

Goddi et al. 2011

Magnetic field in the hot core G31.41

Collapse dominated by magnetic field Magnetic energy dominates over turbulent and centrifugal energy

Girart et al. 2009

Magnetic fields in a sample of 14

Zhang et al. 2014

Converging flows

Gas dynamics on clump scales

Csengeri et al. 2011a,b

A very massive starless clump in IRDC18310-4

Simulation results

• From the global simulation three **clumps** are assigned.

• Each forms a star cluster and has a massive star at its centre.

• Consists of all the mass within 1pc of the precursor of the most massive sink.

Smith et al. 2013

Simulation results

 N_2H^+ lines are **non-gaussian** when viewed with a narrow beam (0.02pc half-width).

Example: Peak separation 0.9km/s $dv_1=0.9$ km/s & $dv_2=0.7$ km/s

Smith et al. 2013