

Interferometric survey of southern class I methanol masers

Max Voronkov | ASKAP Software scientist

Astronomy and Space Science www.csiro.au

Puerto Varas – 19 March 2015 In collaboration with: J.L.Caswell, S.P.Ellingsen, J.A.Green and S.L.Breen

Two classes of methanol masers

• Class I methanol (CH₃OH) masers

- Scattered around YSOs (up to a parsec or so)
- Many maser spots at arcsec resolution
- Collisional excitation (e.g. by shocks)
- Regions of star formation (high & low mass)
- Common masers: 36, 44, 84, 95 GHz, ...
- Rare/weak: 9.9, 23.4, series at 25, 104.3 GHz

• Class II methanol (CH₃OH) masers

- Located in the nearest vicinity of YSOs
- Usually just one maser spot at the arcsec scale
- Radiation excitation (by infrared from YSO)
- Regions of high mass star formation only
- Common masers: 6.7, 12 GHz
- Rare/weak: 19.9, 23, 28, 85/86, 37/38, 107, 108 GHz

Μv main interest Methanol CH₃OH

ATCA-36 and 44 GHz

Class I methanol masers from two different transition series

ATCA 36 and 44 GHz survey

• Masers reported by Slysh et al. (1994), Val'tts et al. (2000) and Ellingsen (2005) which are located south of -35° declination; 71 unique targets in total.

• Largest interferometric survey to date, the first of this kind in the Southern hemisphere, the first interferometric survey at 36 GHz

- Most sources show complex spatial and kinematic structure
 - First, we decomposed all emission into a collection of Gaussians in the spectral domain (each with a position measurement assuming point source)
 - Then, we grouped the Gaussians co-located in both position and velocity within 3σ (referred to as *groups* later on)
 - More than 85% of such *groups* are simple (i.e. just one Gaussian)
- In total, there are 740 groups at 36 GHz and 817 groups at 44 GHz
- Only 292 (or ≈23%) of them are common *groups* for both transitions

G343.12-0.06 (IRAS16547-4247)

H₂ image from Brooks et al. (2003, ApJ, 594, L131); See also ALMA data in Higuchi et al. (2015, ApJL, 798, L33)

See Voronkov et al. (2006, MNRAS, 373, 411) for more info on the source

Dec (J2000)

Association with expanding HII regions?

Class I masers may be associated with ionisation shocks driven by an expanding HII region into surrounding molecular cloud, not just outflows. The analysis was originally based on rare 9.9-GHz masers (see Voronkov et al., 2010, MNRAS, 405, 2471), but 36/44 GHz masers can illustrate it better.

G305.37+0.21

Red contours: 18-cm radiocontinuum from MAGMO

Blue contours: 3-cm spatially filtered radiocontinuum (Hindson et al., 2012, MNRAS, 421, 3418)

Background: 3-colour GLIMPSE image

White circles: 50% sensitivity region at 36 and 44 GHz

+ 44 GHz masers × 36 GHz masers

G329.03-0.20 (left) and G333.47-0.16 (right)

Transitions from different transition series are highly

Velocities of 36 and 44 GHz masers

G305.37+0.21 (selected components)

Need statistics over all matching components

Velocity match and rest frequencies

Velocity difference: 0.22 ± 0.03 km s⁻¹ Suggest: 36169.238 ± 0.011 MHz

Distribution of the separations from YSO

The class II methanol maser at 6.7 GHz traces the YSO location

The distribution is well fitted as an exponential decay with a scale of 263±15 mpc

The same distribution within uncertainties for 36 and 44 GHz masers

However, there might be an excess of detections near YSOs (projected distances about 0.05-0.1 pc)

Spatial spread and near/far distance

G329.07-0.31

Class I masers can serve as a "statistical ruler" to help with near/ far distance ambiguity resolution

Linear offsets are expected to be well below 1 pc

Larger offsets probably mean that a wrong distance has been assumed

Velocity and spatial spread

More evolved sources (with OH masers) have more spread out class I masers, both spatially and in velocity domain

Velocity distribution

36 GHz: mean -0.57±0.06 km s⁻¹, σ =3.65±0.05 km s⁻¹ **44 GHz:** mean -0.57±0.07 km s⁻¹, σ =3.32±0.07 km s⁻¹

G341.19-0.23: 55 km/s velocity spread

- Possible example of a very young source
 - Associated with an infrared dark cloud
 - No other masers detected (although constraint on the H₂O maser is quite weak)

Summary

- Studies of different transitions are very complementary
 - Filling the dots in morphology, high-velocity features
 - Distribution of projected offsets of class I masers from YSOs traced by the 6.7 GHz methanol masers falls off exponentially with the scale of 263±15 mpc
 - The velocity distribution w.r.t the middle of velocity range of associated 6.7-GHz maser is Gaussian (with the exception of high-velocity features). Mean has a small but significant blue-shift offset of -0.57 km/s (uncertainties are 0.06 and 0.07 km/s at 36 and 44 GHz, respectively). The standard deviations are 3.65±0.05 and 3.32±0.07 km/s, respectively.
- Outflow shocks vs. shocks caused by other mechanisms
 - Some class I masers may be caused by expanding HII regions
 - Implications for maser-based evolutionary sequence

For more details see Voronkov et al. (2014, MNRAS, 439, 2584)

Thank you

Astronomy and Space Science Max Voronkov ASKAP Software Scientist

t +61 2 9372 4427
e maxim.voronkov@csiro.au_
w www.narrabri.atnf.csiro.au/people/vor010

Astronomy and Space Science www.csiro.au

