Powerful jets driven by intermediatemass stars in the Carina Nebula

> Megan Reiter University of Arizona

With: Nathan Smith (UA), Megan Kiminki (UA), John Bally (U Colorado), Pat Hartigan (Rice)

Hogerheijde 1998, after Shu et al. 1987

Intermediate-mass ≈ 2-8 M_{sun}

Protostar, embedded in 8000 AU envelope; disk; outflow

Hogerheijde 1998, after Shu et al. 1987

Transition?

see: Vink et al. 2002 Wade et al. 2007 Donehew & Brittain 2011 Cauley & Johns-Krull 2014

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee & Ostriker 2007

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee & Ostriker 2007

Carina Nebula

• 40 HH jets discovered with targeted ACS H α imaging

Smith et al. 2010

- - -

collimated!

collimated!

- Measure $I_{h\alpha} \sim n_e^{2}$
- $n_e \sim 10^3 \text{ cm}^{-3}$ $\rightarrow M = \mu m_H n_e V \pi r^2 f$

*assuming that the jet is fully ionized

Bally & Reipurth 2001

- collimated!
- massive

- Measure $I_{h\alpha} \sim n_e^2$
- $n_e \sim 10^3 \text{ cm}^{-3}$ $\rightarrow M = \mu m_H n_e V \pi r^2 f$

*assuming that the jet is fully ionized

Bally & Reipurth 2001

[Fe II]

[Fe II]

why not Fe⁺⁺?

[Fe II]

why not Fe⁺⁺? $\rightarrow n_{H} > 10^{4} \text{ cm}^{-3}$

collimated!massive x 10

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan & Morse (2007), Kadji^{\circ} c et al. (2012), McGroarty et al. (2007), Noriega-Crespo & Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H₂ jet velocities from Zhang et al. (2013)

Reiter & Smith 2014

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan & Morse (2007), Kadji^{\circ} c et al. (2012), McGroarty et al. (2007), Noriega-Crespo & Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H₂ jet velocities from Zhang et al. (2013)

Reiter & Smith 2014

HH 666*,* ∆t = 9 yr

HH 666, ∆t = 9 yr

Irradiated outflow + jet

Reiter et al. 2015b, submitted

Irradiated outflow + jet

Reiter et al. 2015b, submitted

HH jets from intermediatemass stars:

- collimated!
- massive x 10
- fast

 → look like scaledup version of jets
from low-mass stars

Reiter et al. in prep

Use [Fe II] emission from the jet to probe the environment

Reiter & Smith 2013

Normal (molecular) jet

Irradiated jet

Ionization front in the jet...

Reiter & Smith 2013

· · · · · · · · · · · · · · · · · · ·	НН 1066
	HH c-5
	HH c-6*
	HH 1014
	HH 1007* & HH 1015
	HH 901*
	HH 902*
	HH 1004
	HH c-8
	HH 900*
	HH c-14
	HH 1010
	HH 1006
	HH 1005*
	HH 903
	HH 666

Jet photoabloated at a rate

$$\dot{m} = f \pi \mu m_{\rm H} c_{\rm II} n_e(r_I) r(d)$$

 π

 \dot{M}

m

- Jet travel distance L₁ before completely evaporated
- \rightarrow ~10× \dot{M} from H α EM

[Fe II] connects the jet to the driving protostar

Reiter & Smith 2013

Arce & Goodman 2001

Arce et al. 2007

R.A. (2000)

Irradiated HH jets in Carina

- Episodic?
- Efficiency?
- M(t)

Reiter et al. 2015b, submitted

