Powerful jets driven by intermediatemass stars in the Carina Nebula

Megan Reiter

University of Arizona

With: Nathan Smith (UA), Megan Kiminki (UA), John Bally (U Colorado), Pat Hartigan (Rice)

Intermediate-mass $\approx 2-8 \mathrm{M}_{\text {sun }}$

Intermediate-mass $\approx 2-8 \mathrm{M}_{\text {sun }}$

Hogerheijde 1998, after Shu et al. 1987

Intermediate-mass $\approx 2-8 \mathrm{M}_{\text {sun }}$

Transition?

see: Vink et al. 2002
Wade et al. 2007
Donehew \& Brittain 2011
Cauley \& Johns-Krull 2014

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee \& Ostriker 2007

Best outflow tracers?

Reipurth et al. 1999, Lee et al. 2000, McKee \& Ostriker 2007

UV / winds

Ha-bright bow shock

Carina Nebula

- 40 HH jets discovered with targeted ACS H α imaging

Why Hubble?

collimated!

- Measure $I_{h \alpha} \sim n_{e}{ }^{2}$
- $\mathrm{n}_{\mathrm{e}}^{\sim} \sim 10^{3} \mathrm{~cm}^{-3}$

$$
\rightarrow \dot{\mathrm{M}}=\mu \mathrm{m}_{\mathrm{H}} \mathrm{n}_{\mathrm{e}} \vee \pi \mathrm{r}^{2} \mathrm{f}
$$

*assuming that the jet is fully ionized

Why Hubble?

collimated!

massive

- Measure $I_{h \alpha} \sim n_{e}^{2}$
- $\mathrm{n}_{\mathrm{e}} \sim 10^{3} \mathrm{~cm}^{-3}$
$\rightarrow \dot{\mathrm{M}}=\mu \mathrm{m}_{\mathrm{H}} \mathrm{n}_{\mathrm{e}} \mathrm{V} \pi \mathrm{r}^{2} \mathrm{f}$

*assuming that the jet is fully ionized

Bally \& Reipurth 2001
[Fe II] $1.26 \mu \mathrm{~m}$ \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR

[Fe II] 1.26 um \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR
[Fe II] $1.26 \mu \mathrm{~m}$ \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR

[Fe II] $1.26 \mu \mathrm{~m}$ \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR
[Fe II] $1.26 \mu \mathrm{~m}$ \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR
[Fe II] $1.26 \mu \mathrm{~m}$ \& $1.64 \mu \mathrm{~m}$ images from WFC3-IR

- collimated! massive x 10

Faster?
$\mathrm{HH} 901, \Delta \mathrm{t}=4.5 \mathrm{yr}$

Faster?

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan \& Morse (2007), Kadjǐ c et al. (2012), McGroarty et al. (2007), Noriega-Crespo \& Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H_{2} jet velocities from Zhang et al. (2013)

Faster?

Bally et al. (2002), Bally et al. (2012), Devine et al. (1997), Devine et al. (2009), Hartigan et al. (2001), Hartigan et al. (2005), Hartigan \& Morse (2007), Kadjǐ c et al. (2012), McGroarty et al. (2007), Noriega-Crespo \& Garnavich (2001), Reipurth et al. (2002), Smith et al. (2005), and Yusef-Zadeh et al. (2005). H_{2} jet velocities from Zhang et al. (2013)

Faster?
$\mathrm{HH} 901, \Delta \mathrm{t}=4.5 \mathrm{yr}$

Faster?

$\mathrm{HH} 666, \Delta \mathrm{t}=9 \mathrm{yr}$
(a)

Faster?

$\mathrm{HH} 666, \Delta \mathrm{t}=9 \mathrm{yr}$

(a)

Irradiated

outflow + jet

Irradiated

outflow + jet

HH jets from intermediatemass stars:

- collimated!
- massive x 10
- fast
\rightarrow look like scaledup version of jets from low-mass stars

Reiter et al. in prep

Use [Fe II] emission from the jet to probe the environment

Normal (molecular) jet

Irradiated jet

Ionization front in the jet...

Reiter \& Smith 2013

- Mass lost in jet at rate

- Jet photoabloated at a rate

$$
\dot{m}=f \pi \mu m_{\mathrm{H}} c_{\mathrm{II}} n_{e}\left(r_{I}\right) r(d)
$$

- Jet travel distance L_{1} before completely evaporated
\rightarrow^{\sim} 10x \dot{M} from H α EM

[Fe II] connects the jet to the driving protostar

Reiter \& Smith 2013

RA [degrees]

Arce \& Goodman 2001

[^0]
R.A. (2000)

Irradiated HH jets in Carina

- Episodic?
- Efficiency?
- $\dot{\mathrm{M}}(\mathrm{t})$

Molecular outflow properties predicted by different models
Predicted property of molecular outflow along axis

Reiter et al. 2015b, submitted

[^0]: ${ }^{a}$ Assuming an underlying density distribution of r^{-1} to r^{-2}

