

Ionized Jet Candidates Associated with Young High Massive Stars

Viviana Rosero

NMT & Grote Reber Fellow NRAO, Socorro NM

Peter Hofner, NMT Mark Claussen, NRAO

Collaborators

Stan Kurtz - CRyA, Mexico

Karl Menten - MPIfR Bonn, Germany

Friedrich Wyrowski - MPIfR Bonn, Germany

Esteban Araya - Western Illinois Univ., USA

Carlos Carrasco - MPIfR Bonn, Germany

Luis F. Rodríguez - CRyA, Mexico

Riccardo Cesaroni - INAF, Italy

Laurent Loinard - CRyA, Mexico

Simon Ellingson - UTAS, Australia

Sergio Molinari - INAF-IAPS, Italy

Thermal Jets

- Ionized jets are predicted to occur at the base of the molecular outflow
- Small number of *ionized* jets from young massive objects (YMOs) detected to date
- Detections of *ionized* jets and disks help to complete the picture of massive star formation

Motivation

- Are jets a common phenomena among high mass YSOs?
- Is there are a common origin of jets in YSOs of different luminosities?
- Does the association of cores with radio continuum indicate an evolutionary sequence?

Motivation

Previous Work

Evolutionary sequence of IR sources and their association (or not) with radio continuum (e.g., Molinari et al. 1996, 1998, 2000; Rathborne et al. 2006; Chambers et al. 2009)

Jets occurrence rate towards YMOs of $L > 2 \times 10^4 L_{\odot}$ is ~38% (Guzmán et al. 2012)

This Project: Sample Selection

- CMCs: mm compact cores in IRDCs (Rathborne et al. 2006)
- CMC-IR: mm compact cores in IRDCs associated with 24 μm point sources (Rathborne et al. 2006 and Chambers et al. 2009)
- HMCs: Heated by luminous, embedded protostar (Sridharan et al. 2002)

In addition some cores are associated with: Maser (CH₃OH and H₂O) emission Outflows activity

Rathborne et al. 2006

This Project: Sample Selection

- CMCs: mm compact cores in IRDCs (Rathborne et al. 2006)
- CMC-IR: mm compact cores in IRDCs associated with 24 μm point sources (Rathborne et al. 2006 and Chambers et al. 2009)
- HMCs: Heated by luminous, embedded protostar (Sridharan et al. 2002)

In addition some cores are associated with: Maser (CH₃OH and H₂O) emission Outflows activity

Rathborne et al. 2006

VLA Survey: Sensitivity

Previous Studies

This Survey

Center Frequency (GHz): 4.9, 7.4, 20.9, 25.5 rms: 3 - 10 μJy/beam Resolution ~ 0.5"

VLA Survey: Sensitivity

Previous Studies

This Survey

5 GHz rms~ 0.4 mJy/bm Resolution ~ 1.5" B configuration

4.9, 7.4 GHz rms~ 5 μJy/bm Resolution ~ 0.4" A configuration

VLA Massive Protostar Survey: Jet candidates

C-band images, $\sim 5 \mu$ Jy/beam rms, ~ 0.4 " angular resolution

VLA Massive Protostar Survey: Jet candidates

C-band images, $\sim 5 \mu$ Jy/beam rms, ~ 0.4 " angular resolution

Survey: Preliminary Results

- **56 regions**
- Detection criterion: $I_{\nu} > 5\sigma$
- Detections:
 - 1/18 CMC: 6%
 8/15 CMC-IR: 53%
 21/23 HMC: 91%

Survey: Preliminary Results

Lower Limit => not detection at 5 GHz

HI-GAL Data: Luminosities

G28.53-mm1

G34.43-mm1

IRAS 18566+0408

Credit: S. Molinari; R. Cesaroni

CMC

Resolution $\leq 30''$

Viviana Rosero, NMT & NRAO

Radio Continuum vs Bolometric Luminosity correlation

Radio Continuum vs Bolometric Luminosity correlation

Radio continuum vs Molecular outflow correlation

Starless cores: sensitivity issue or age stage?

High detection rate of radio continuum towards cores associated with IR, some with multiple radio components

Ionized jets might have a common origin among YSOs of any given luminosity

Conclusive results need kinematic information

