A sub-arcsecond study of the diskoutflow system in the S255IR area of high mass star formation

Igor Zinchenko

(Institute of Applied Physics of the Russian Academy of Sciences) Sheng-Yuan Liu, Yu-Nung Su (ASIAA, Taiwan), Svetlana Salii, Andrej Sobolev (UrFU, Russia), Peter Zemlyanukha (IAP RAS, Russia), Devendra K. Ojha (TIFR, India) Henrik Beuther (MPIA, Germany) Yuan Wang (PMO, China)

Outline

- General description of S255
- Observations
- Basic properties of the continuum and molecular emission
- S255IR-SMA1
 - Kinematics
 - Physical properties
- Morphology and properties of the outflows
- Surroundings

S255 star forming region

GMRT 610 MHz (green) and IRAM 30m 1.2 mm (cyan) contours overlaid on the Spitzer 8 µm image

New observations

SMA

216.8-220.8 GHz θ ~ 0.4" 228.8-232.8 GHz 342.0-346.0 GHz θ ~ 2" 354.0-358.0 GHz

Continuum and multiple (several tens) spectral lines IRAM 30m

CO(3-2) CS(7-6) SiO(5-4) N₂H⁺(3-2)

Continuum

α (2000)

Spectra of several representative molecular transitions towards the SMA1 (upper panel) and SMA2 (lower panel) clump

npos	α (2000)	δ (2000)
+0.2"	6:12:54.01	17:59:23.26
0.0"	6:12:54.01	17:59:23.06
-0.2"	6:12:54.01	17:59:22.86

53.98^s

Nº	Freq. (MHz)	E _{up} (K)
1	217886.39	500.5
2	218440.05	37.6
3	220078.49	88.7
4	229589.07	366.5
5	229758.81	81.2
6	230027.00	31.9
7	230292.73	601.7
8	232419.50	649.2
9	217299.20	373.9
10	217642.86	745.6
11	229864.22	578.6
12	229939.18	578.6
13	231281.15	165.3
14	232418.57	165.4
15	232783.59	446.5

npos	T _k (K)	lg(N _{CH3OH} /ΔV)	lg(n _{H2})	fil. fac. (%)
+0.2"	182.5 (170-200)	12.55 (12.45-12.70)	(3.5-9.0)	14.8
0.0"	177.5 (165-195)	12.75 (12.60-12.98)	(3.5-9.0)	16.0
-0.2"	152.5 (140-165)	12.95 (12.70-13.10)	7.25 (3.5-9.0)	15.2

Hot core temperature from CH₃CN

Physical properties

The virial mass of the hot core derived from the line widths is ~ 10 M_{\odot}, which is consistent with the estimated mass of the central star (24 M_{\odot}).

Core rotation

C. Goddi et al.: H₂O and CH₃OH maser associations in AFGL 5142 and Sh 2-255 IR

DCN in the hot core

DCN (3-2)

 $HNCO(10_2-9_2)$

The position velocity diagram for the IRAM-30m CO data

Arce et al. 2007

Outflow parameters from the CO(3-2)/CO(2-1) intensity ratio

The CO emission is apparently optically thin. High temperature and density are implied. The excitation increases with velocity.

Dense high velocity clump

Grey-scale image – CS(7-6) Contours – CO(3-2)

 $n > 3 \times 10^6$ cm⁻³, gravitationally unbound

Summary

- The hot (T ~ 200 K) dense (n > 6 10⁸ cm⁻³) core in S255IR-SMA1 probably represents a fragmented (the filling factor ~ 0.2) protostellar disk around the massive (24 M_{\odot}) star with a size of ~500 AU. The mass of the clump is significantly lower than the mass of the central star.
- A strong DCN emission very close to the center of the hot core most probably indicates a presence of a rather large amount (≥ 1 M_☉) of dense cold (T < 80 K) material here.
- The CO outflow morphology obtained from combination of the SMA and IRAM-30m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow and leads to a rather distorted picture.
- The outflow is most probably driven by jet bow shock. There are signs of episodic ejections.
- The proper motions of the water masers excited along the jet imply some misalignment of the jet and rotation axis of the material in the outer parts of the clump.
- The outflow strongly affects the chemical composition of the surrounding medium. The N₂H⁺ molecules are destroyed.

THANKYOU!