

The circumstellar matter distribution of the proto-typical MYSO GL 2591

Fernando Olguin Melvin Hoare

pyfao@leeds.ac.uk

C. Aspin et al., NIRI, Gemini Obs., NSF

GL 2591

VLA 3: Proto-typical MYSO with jet

Distance[†]: 3.3 ± 0.1 kpc Luminosity^{*}: 2×10^5 L_{\odot} Stellar mass^{*}: 20-40 M_{\odot}

Other sources identified in the region (Trinidad et al. 2003): VLA1 & VLA2: HII regions

[†]Rygl et al. (2012) ^{*}Sanna et al. (2012)

Radiative transfer model

Rotationally flattened envelope (Ulrich 1976) + paraboloidal bipolar cavities + flared disk with the RT code Hyperion (Robitaille 2011)

Results: SED

Viewing angle = 30°

Dust:

Envelope & cavities: Kim et al. (1994)

Disk: (de Wit et al. 2010) warm silicates (Ossenkopf et al. 1992) + MRN amorphous carbon

70 microns HOBYS (Motte et al. 2010)

Opening and inclination angles are well constrained

Partially resolved inner region not well fit

384

192

ntensity [MJy

Near-IR

Elongation is not reproduced at 450 microns.

Sub-mm

Sub-mm

PdBI 1.3 mm continuum

Conclusions

- Resolved 70 microns observations show extended emission along the cavity of GL 2591
- The geometry of the source is well constrained by models with an extended envelope + bipolar cavity
- An inner disk may explain the small scale emission observed at 1.3mm and K band emission

Future work

Kinematics: line radiative transfer with LIME (Brinch & Hogerheijde 2010)

High resolution images of the jet with e-Merlin (~40mas resolution)

Hint of dust grain growth (e.g. Maud et al. 2013)

1.3 mm

