Cloud disruption via ionized feedback: testing simulations by tracing pillar dynamics in Vulpecula

Joseph Mottram

with Pamela Klaassen, Jim Dale & Attila Juhasz

Introduction: Pillars of Destruction

Pillars: Historical Context

- First discovered in the optical (Minkowski 1949)
- Associated with irradiated molecular clouds
- Multi-wavelength high resolution continuum studies only possible recently

Optical

Pillars: Historical Context

- First discovered in the optical (Minkowski 1949)
- Associated with irradiated molecular clouds
- Multi-wavelength high resolution continuum studies only possible recently

Pillars: What do they tell us?

- How and at what rate ionising feedback destroys clouds affects:
 - global and local star formation efficiency
 - evolution of revealed protostars (and their disks)
 - early cluster evolution
 - impact of supernovae and propagation of enriched material
- Pillars are a diagnostic of initial density variations and current feedback conditions

- Starting from different initial conditions, all form pillars which look ok, so shape is not a discriminant
- Predict different kinematics

- Example 1 (G09):
 - Paper: Gritschneder+ 2009
 - RDI of a Bonnor-Ebert
 Sphere
 - Global pillar motion relative to cloud: negligible
 - Velocity dispersion: 1-2km/s
 - Internal flows: yes

- Example 2 (G10):
 - Paper: Gritschneder+ 2010
 - Planar ionising flux hitting a supersonic medium
 - Global pillar motion relative to cloud: negligible
 - Velocity dispersion: >3 km/s
 - Internal flows: yes

Colourscale = density

- Example 3 (D12):
 - Paper: Dale+ 2012
 - Ionising cluster inside a filamentary molecular cloud
 - Global pillar motion relative to cloud: 3 km/s
 - Velocity dispersion: ~1 km/s
 - Internal flows: no

Vulpecula: Ideal for a proof of concept

- Active nearby (2.3 kpc) star formation region
- Many pillars in observations of various surveys

- Active nearby (2.3 kpc) star formation region
- Many pillars in observations of various surveys

- Active nearby (2.3 kpc) star formation region
- Many pillars in observations of various surveys

- Active nearby (2.3 kpc) star formation region
- Many pillars in observations of various surveys

- Active nearby (2.3 kpc) star formation region
- Many pillars in observations of various surveys

Cloud disruption via ionized feedback: tracing pillar dynamics in Vulpecula

Klaassen, Mottram, Dale & Juhasz, 2014, MNRAS, 441, 656

Observations

- Tip of VulP3 from Billot+, 2010 observed with CARMA D-array in ¹²CO, ¹³CO and C¹⁸O J=1-0
- Data from Exeter FCRAO CO survey (Brunt+, Mottram+, in prep.) used for zero-spacing

Physical Conditions

- Mean T_{dust}=18K from greybody fits to Hi-GAL maps
- Mean N[H2] = 8×10²¹ cm⁻³ from ¹³CO

Physical Conditions

- n~8×10³ cm⁻³ assuming pillar is a cylinder
- $M=94M_{\odot}$ from ¹³CO, $91M_{\odot}$ from dust

Kinematics

- ¹²CO traces motions along pillar surface
- Velocity dispersion up to 1.4 km/s

Kinematics

- ¹³CO & C¹⁸O trace pillar core with no internal flows
- Internal velocity dispersion ~0.3-0.5 km/s

Kinematics

 Pillar is offset from nearby cloud and ionising source by ~6km/s

Confronting the Models

Model	Pillar Motion (km/s)	Velocity Dispersion (km/s)	Internal Flows
Obs	6	Internal: 0.3-0.5 Surface: <1.4	Surface only
G09			
G10			
D12			

Confronting the Models

Model	Pillar Motion (km/s)	Velocity Dispersion (km/s)	Internal Flows
Obs	6	Internal: 0.3-0.5 Surface: <1.4	Surface only
G09	None	1-2	yes
G10	None	>3	yes
D12	3	~1	no

Confronting the Models

Model	Pillar Motion (km/s)	Velocity Dispersion (km/s)	Internal Flows
Obs	6	Internal: 0.3-0.5 Surface: <1.4	Surface only
G09	None	1-2	yes
G10	None	>3 🗙	yes
D12	3	~1 🖌	no

- G10 model ruled out (too large velocity dispersion)
- Not able to distinguish between two others

Conclusions: A journey of a thousand miles begins with a single step

Conclusions & Next Steps

- The gas kinematics of pillars are an important discriminant between models of ionising feedback
- For a pillar in Vulpecula, we have ruled out one model (G10)
- More likely that pillars are filaments being revealed rather than formed by feedback
- High resolution observations of a larger number of pillars are needed to reveal property distributions, enabling global conclusions -> ALMA

Thank you for your attention. Any questions?

Klaassen, Mottram, Dale & Juhasz, 2014, MNRAS, 441, 656

Cores spaced by Jeans Length

- From n~8×10⁻³ cm⁻³, T=18 K -> Jeans length is 0.3 pc
- Two cores seen in C¹⁸O are spaced by ~0.3 pc
- Masses ~15 M_☉ from ¹³CO (corrected for τ using C¹⁸O)
- ~30% of mass of pillar is in cores, so overall SFE unlikely to exceed 10%

Rate of cloud destruction

- Assuming constant spherical expansion at 6km/s:
 - Clears 6×10⁻⁵ pc per year
 - Alternatively, clears $1pc^3$ in 1.6×10^4 yrs
 - Given distance to ionising source of 16pc, suggests that ionisation began ~2.6×10⁵ yrs ago
 - This is on the order of the Class 0 or MYSO lifetimes (Evans et al., 2009, Mottram et al., 2011b)
 - Thus, anything more evolved (e.g. Class I/II) must have started forming before onset of ionisation