Galactic flows and the formation of

stellar elusters

$\$$ Romas Smilgys, Clare Dobbs, Rowan Smith, Thomas Maschberger, Nick Moeckel; John MacLachlin, Jim Dale, Kenny Wood, Diego Falceta-Goncalves, Matthew Bate, Paul Clark

Disclaimer

I am not Ian Bonnell!

For any difficult questions about this talk see iab1@st-and.ac.uk

Formation of stellar clusters

Fragmentation in filaments ~ Jeans length
clusters grow at intersection of filaments

Filaments feed gas and stars into cluster

Clusters grow through Hierarchical mergers

SF efficiencies and clustering

- Bound conditions produce stellar clusters and full IMF
- See Clark et al 2008

IMF depends on birth environment

- Stellar clusters
- Full IMF
- Form from Bound conditions SFE 20-40 \%

Clark et al 2007; Bonnell et al 2011

- Distributed SF
- No high-mass, few low mass stars
- Flat/Peaked IMF
- Unbound regions
- Low SF efficiencies

Accretion in Clusters

- Higher mass stars formed through accretion
- Tidal radius accretion

```
M}\propto\mp@subsup{M}{}{2/3
```


Maschberger et al 2014

What drives star formation ?

Compare theoretical timescales with simulated SF times

1) Galactic flows dominate on large scales ($\sim 10+p c$)
2) Self-gravity of forming cluster dominates on smaller scales,
3) For Densities $>10^{3}$ cm^{-3}

Triggering Star Formation

R. Smilgys

26/1

səu!̣ uoب̣əןdə0 : s._no|oう

Formation of Stellar Clusters

Stellar clusters gather gas from large distances \sim few 10s of pc
Cluster formation and star formation are simultaneous.

Formation history of a $19000 \mathrm{M}_{\mathrm{o}}$ cluster

Can ionisation disrupt clouds?

High-mass, large $\mathrm{v}_{\text {esc }}$
High density gas unaffected

Ionisation fills preexisting bubbles

Time: $5.38 \mathrm{Myr}, 2.19 \mathrm{t}_{\mathrm{ff}}$
Lower-mass, low $V_{\text {esc }}$ clouds

Ionisation
dynamically important

Dale, Ercolano \& Bonnell 2012

Supernova feedback

- Initial conditions as published in Dale et al. 2014 and included no feedback (control), ionisation only, and dual feedback from both ionisation and winds.
- SN inserted with 10^{51} ergs split equally between thermal and kinetic energy at the location of the most massive sink particle.

Before and after the supernova:
-Control (top) large bubble driven into the gas
-Dual feedback (bottom) - almost no change!

Summary

- Large-scale Shocks and cooling can trigger star formation
- Realistic molecular clouds (structures/dynamics)?
- Large scale turbulence driving
- Need not be globally bound: low star formation efficiencies
- Study galaxy star formation rates
- Clusters form from several to 10's pc scales
- Assembled by large scale flows
- Clusters form in bound regions (global infall)
- Age spreads up to several Myrs
- Massive stars accrete as
- Ionising Feedback factor of 2 decrease n SFR

$$
\dot{M} \propto M^{2 / 3}
$$

Spiral arm driven turbulence

Falceta-Goncalves et al 2014

Single cloud-arm interaction
$100 \mathrm{~cm}^{-3}$ cloud self-shocking cooling KH-instabilities

Drives turbulence

