



# Galactic flows and the formation of stellar clusters

Romas Smilgys, Clare Dobbs, Rowan Smith, Thomas Maschberger, Nick Moeckel, John MacLachlin, Jim Dale, Kenny Wood, Diego Falceta-Goncalves, Matthew Bate, Paul Clark



Cardiff, 26/11/14

### Disclaimer

I am not Ian Bonnell!

For any difficult questions about this talk see iab1@st-and.ac.uk

# Formation of stellar clusters

Fragmentation in filaments ~ Jeans length

clusters grow at intersection of filaments

Filaments feed gas and stars into cluster

Clusters grow through Hierarchical mergers

Bonnell et al 2011



#### SF efficiencies and clustering



#### IMF depends on birth environment

- Stellar clusters
  - Full IMF
  - Form from Bound conditions SFE 20-40 %

Clark et al 2007; Bonnell et al 2011

- Distributed SF
  - No high-mass, few low mass stars
    - Flat/Peaked IMF
  - Unbound regions
    - Low SF efficiencies



# Accretion in Clusters



 Higher mass stars formed through accretion

$$\dot{M} \propto M^{2/3}$$



Maschberger et al 2014

Tidal radius accretion

Realistic initial conditions for star formation

Global disc simulation 25 million SPH particles 2 x 10<sup>9</sup> M<sub>sun</sub> gas

(Koyama & Inutsuka 2002)



## What drives star formation ?

- Compare theoretical timescales with simulated SF times
- Galactic flows dominate on large scales (~10+ pc)
- 2) Self-gravity of forming cluster dominates on smaller scales,
- For Densities > 10<sup>3</sup>
   cm<sup>-3</sup>



#### **Triggering Star Formation**







Colours : Depletion times

## Formation of Stellar Clusters

Stellar clusters gather gas from large distances

~few 10s of pc

Cluster formation and star formation are simultaneous.



#### Formation history of a 19000 M<sub>o</sub> cluster



#### Can ionisation disrupt clouds?

High-mass, large v<sub>esc</sub>

#### High density gas unaffected

#### Ionisation fills preexisting bubbles





.0<sup>-4</sup> 10<sup>-5</sup> 10<sup>-2</sup> 10<sup>-1</sup> 10<sup>5</sup> log Σ (g cm<sup>-2</sup>) LUNα, JUNE 9TN 2014

Dale, Ercolano & Bonnell 2012

 $\log \Sigma (g \text{ cm}^{-2})$ 

Lower-mass, low v<sub>esc</sub> clouds

Ionisation dynamically important

#### Supernova feedback

Initial conditions as published in Dale et al. 2014 and included no feedback (control), ionisation only, and dual feedback from both ionisation and winds.
SN inserted with 10<sup>51</sup> ergs split equally between thermal and kinetic energy at the location of the most massive sink particle.

-20

-20

x[pc]

Before and after
the supernova:
Control (top) –
large bubble driven
into the gas
Dual feedback
(bottom) – almost
no change!



20

-20

x[pc]

20

## Summary

- Large-scale Shocks and cooling can trigger star formation
  - Realistic molecular clouds (structures/dynamics)?
    - Large scale turbulence driving
    - Need not be globally bound : low star formation efficiencies
  - Study galaxy star formation rates
  - Clusters form from several to 10's pc scales
    - Assembled by large scale flows
    - Clusters form in bound regions (global infall)
    - Age spreads up to several Myrs
    - Massive stars accrete as
- Ionising Feedback factor of 2 decrease n SFR

 $\dot{M} \propto M^{2/3}$ 

## Spiral arm driven turbulence





Single cloud-arm interaction

100 cm<sup>-3</sup> cloud self-shocking cooling KH-instabilities

Drives turbulence



Falceta-Goncalves et al 2014