

G305: Looking into a stellar maternity with ALMA

Elise Servajean Guido Garay Jill Rathborne

CONICYT Ministerio de Educación

Gobierno de Chile

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating 1.2-mm/SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating 1.2-mm/SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

 $Mid-IR \rightarrow T$

 $M_d \sim 670 M_{\odot}$

n~ 2x10⁵ cm⁻³

 $\Delta v \sim 5 \text{ km s}^{-1}$

 $T_d < 15 K$

R ~ 0.3 pc

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating 1.2-mm/SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

 $11^{20}30^{8}$

Mid-IR→ T

Right Ascension (J2000)

R ~ 0.3 pc n~ 2x10⁵ cm⁻³ $\Delta v \sim 5 \text{ km s}^{-1}$ $T_{d} < 15 K$

Initial conditions for the formation of high-mass stars

G305

Single dish molecular line observations

APEX telescope 20" angular resolution

Single dish molecular line observations

APEX telescope 20" angular resolution

Some interesting results:

Looking into G305 with ALMA

Cycle 1 with 35 antennas, 12m + ACA 2"angular resolution 0.4 km/s velocity resolution Band 3: continuum + molecular lines: HCO+, N₂H+, CS, ¹³CO

Looking into G305 with ALMA

Cycle 1 with 35 antennas, 12m + ACA 2"angular resolution 0.4 km/s velocity resolution Band 3: continuum + molecular lines: HCO+, N₂H+, CS, ¹³CO

Finding the cores

7 cores

Mass range: 3-25 M_☉

Radius range: 0.03-0.06 pc

Density range: 7x10⁵-2x10⁷ cm⁻³

Mass vs Radius

Summary

- ALMA observations show that the clump fragments into several cores.
- ♦ Infalling motions are revealed through the HCO+ line.
- ♦ The CS line profiles show the presence of an outflow.
- ♦ Based on the physical parameters some cores will form massive stars.