G305: Looking into a stellar maternity with ALMA

Elise Servajean

Guido Garay
Jill Rathborne

Ministerio de
Educación

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating $1.2-\mathrm{mm} /$ SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating $1.2-\mathrm{mm} /$ SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

Previous Search of Cold Clumps

Garay et al. (2004) searched for mm-objects without MIR and FIR emission by cross correlating $1.2-\mathrm{mm} /$ SIMBA, MSX and IRAS emission maps and found four massive cold clumps. One of them is G305.

Initial conditions for the formation of high-mass stars

Background: $8 \mu \mathrm{~m}$
G305

Garay et al. (2015)

Single dish molecular line observations

APEX telescope
20" angular resolution

Single dish molecular line observations

APEX telescope
20" angular resolution

Some interesting results:

Looking into G305 with ALMA

Cycle 1 with 35 antennas, 12m + ACA
2"angular resolution
$0.4 \mathrm{~km} / \mathrm{s}$ velocity resolution
Band 3: continuum + molecular lines: $\mathrm{HCO}^{+}, \mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{CS},{ }^{13} \mathrm{CO}$

Looking into G305 with ALMA

Cycle 1 with 35 antennas, 12m + ACA 2"angular resolution
$0.4 \mathrm{~km} / \mathrm{s}$ velocity resolution
Band 3: continuum + molecular lines: $\mathrm{HCO}^{+}, \mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{CS},{ }^{13} \mathrm{CO}$

Background image: 3mm continuum

Finding the cores

7 cores
Mass range: 3-25 M_{\odot}
Radius range: 0.03-0.06 pc
Density range: $7 \times 10^{5}-2 \times 10^{7} \mathrm{~cm}^{-3}$

Mass vs Radius

Density (size)

Summary

\diamond ALMA observations show that the clump fragments into several cores.
\diamond Infalling motions are revealed through the HCO+ line.
\diamond The CS line profiles show the presence of an outflow.
\diamond Based on the physical parameters some cores will form massive stars.

