Fragmentation of Molecular Clumps and Formation of Protoclusters

Qizhou Zhang Harvard-Smithsonian Center for Astrophysics

Collaborators: Ke Wang, Xing (Walker) Lu, Izaskun Jimenez-Serra

Massive Star (Cluster) Formation

 10^{2} pc n(H₂) ~ 10^{2} cm^{-3} M ~ 10^{5} Msun •

•

- What is the initial conditions (physical/chemical) for cluster star formation?
- How do massive clumps fragment & which processes control fragmentation?
- How to make massive cores?
 - Does cluster star formation proceed in equilibrium?

See review by Zinnecker & Yorke 2007

ge

Recent High-Res Imaging of IRDCs

G11.11: Wang+ 2014

+ + 5pc

G14: Busquet+ 2013

03/15/ 2015

Zhang, Wang, Pillai, Rathborne 2009; Wang, Zhang, Pillai, Wyrowski, Wu 2008 Wang, Zhang, Rathborne, Jackson, Wu 2006; Rathborne et al. 2010

03/15/2015

Cores contain many Jeans mass

 $n(H_2)=7\times10^4$ cm⁻³, T=15K

For spatially resolved

cores (res $\langle L_J \rangle$

Zhang, Wang, Pillai, Rathborne 2009

See also Brogan et al. 2009; Longmore et al 2010; Csengeri et al. 2010, 11; Pillai et al. 2011; Tan et al. 2013 03/15/2015 Chile 5

Hierarchical Fragmentation

Comparison with Jeans fragmentation: Thermal fragmentation does not explain massive cores Additional support from turbulence and/or magnetic field

G28.34+0.06: Chemical Evolution

G28.34: ALMA Observations

ALMA observations reached a 3 mass sensitivity of 0.2 Msun, far below the global Jeans mass of 2 Msun.

Zhang et al. 2015 (arxiv: 1503.03017)

03/15/2015

Time for Some Chemistry:

Time for Some Chemistry:

03/15/2015

Emission from Dense Cores:

Zhang et al. 2014

03/15/2015

Does cluster formation from equilibrium gas

Name	M_{gas}	ΔV^a	Radius	M_{vir}	α^b	
	(M_{\odot})	$(\mathrm{km~s^{-1}})$	(pc)	(M_{\odot})		
Clump G28-P1	1000	2.67	0.30	440	0.44	
Core 1	28.0	1.20	0.023	6.93	0.25	
Core 2	21.0	1.50	0.021	9.91	0.47	
Core 3	22.0	0.940	0.023	4.28	0.19	
Core 4	43.0	1.10	0.028	7.07	0.16	
Core 5	20.0	1.70	0.010	6.34	0.31	
Condensation 1a	8.34	1.70	0.0086	5.2	0.62	
Condensation 2a	6.38	1.70	0.0086	15.6	0.81	
Condensation 3a	8.01	1.70	0.0086	15.6	0.64	
Condensation 4a	8.08	1.70	0.0086	15.6	0.64	
Condensation 5a	9.75	1.70	0.0086	15.6	0.53	

$$\alpha = \frac{M_{vir}}{M} = \frac{5\sigma^2 R}{GM}$$

See also Csengeri et al. 2011, Pillai et al. 2011, 2015; Tan et al. 2013

Magnetic Fields ??

SMA Polarization Survey of Massive SF Regions

Role of Magnetic Fields in Cluster formation

Name	M_{gas} (M _{\odot})	ΔV^a (km s ⁻¹)	r (pc)	M _{vir} (M _o)	α^b	M_B (M _Q)	α_{total}^{c}
Clump G28-P1	1000.0	2.67	0.30	444	0.44	637.9	2.08
Core 1	28.0	1.2	0.030	6.93	0.25	9.79	0.60
Core 2	21.0	1.5	0.021	9.91	0.47	8.199	0.86
Core 3	22.0	0.94	0.023	4.28	0.19	9.90	0.64
Core 4	43.00	1.10	0.028	7.07	0.16	14.44	0.50
Core 5	20.0	1.70	0.01	6.34	0.32	2.03	0.42
Condensation 4	12.1	1.70	0.0075	4.57	0.38	1.06	0.47
Condensation 9	6.4	1.70	0.0026	1.58	0.253	0.126	0.27
Condensation 20	10.2	1.70	0.0069	4.17	0.41	0.880	0.50
Condensation 28	3.6	1.70	0.0012	0.705	0.20	0.0251	0.20
Condensation 38	27.0	1.70	0.0047	2.82	0.10	0.402	0.12

"The line width for cores is measured from the NH₃ (1,1) data observed from the VLA (Wang et al. 2012). Line widths in condensations are measured from the $C^{18}O$ 2-1 data in this paper.

$${}^{b}\alpha = \frac{M_{vir}}{M_{gas}}$$

 $^{c}\alpha_{total} = \frac{M_{uir} + M_{B}}{M_{ass}}$, where M_{B} is the magnetic virial mass.

$$\alpha = \frac{M_{vir}}{M} = \frac{5\sigma^2 R}{GM}$$

Magnetic fields may play an important role in cloud support

If B(clump)=0.27 mG a_{total} (clump)=2 Pillai et al. 2015

B(cores) ~> 1-10 mG see Zhang et al 2014. See Girart's talk

03/15/2015

CO Outflows

10 molecular outflows Outflow energetics consistent with those of intermediate stars

Outflow energy ~ turbulent energy

 $M_{acc} \sim 10^{-5}$ Msun/yr

Need 10⁶ yrs to form 10 Msun *if* M_{acc} = cont.

Emission from Outflows:

Chemical Differentiation

Cores 2,3,4 are chemically more advanced than Cores 1,2 Comparison with protostellar cores in DR 21 filament suggests Cores 2,3,4 harbor intermediate mass protostars!

Zhang et al. 2015

03/15/2015

Chemical Evolution: Cold Core to Hot Core

Follow dynamic collapse and chemical evolution (depletion) under a constant T Turn on protostellar heating and follow chemical evolution in gas phase See Viti et al. 2004

With Jimenez-Sierra, Viti et al.

van Dishoeck & Blake 1998

Where are low-mass protostars?

Clump mass 10³ Msun → 100 stars from 0.5 - 20 Msun Identified 38 cores Core mass function top heavy Lack of low-mass cores by >x5!

Zhang et al. 2015

03/15/2015

Where are low-mass protostars?

Kirk et al. 2006 SCUBA 870 µm

ALMA simulated observations at 1.3mm

48

6)

0

32^s

Gutermuth et al. 2009

NGC 1333 Class 0 protostars detected at distance of G28.34

03/15/2015

Where are low-mass protostars?

Simulated ALMA observations using G28 and NGC1333

A low-mass such as NGC1333 can be reliably detected if present

Low-mass protostars form after massive ones in a cluster

Conclusions

- Massive cores formed during early fragmentation are 10x to 10²x
 more massive than thermal Jeans mass → Important role of turbulence support and perhaps magnetic fields.
 - Gas in cluster forming clumps is sub-virial, unless magnetic fields are strong (~ mG)
- Massive protostars grow from low-intermediate mass protostars.
- Dense cores harboring massive stars undergo significant increase in temperature (and perhaps mass). As a result, they undergo chemical change during the early evolution.
- Low-mass protostars appear to form after the formation of massive stars.

How to Make Massive Cores: Initial Fragmentation Competitive Accretion Start with cores with 0.5 Msun

 $M_{J} = \frac{\pi}{6} \left(\frac{\pi C_{s}^{2}}{G}\right)^{3/2} \rho_{o}^{-1/2}$

Bonnell et al. 2001, 2004 Monolithic Collapse

accrete

10

Final Stellar Mass (M_

0.1

envelope

10

0.1

Core

0.1

Is heating sufficient to increase M_J?

12 16 03'00" tostellar heating? (J2000) 20" 6 -04 03 40 18 42 52 51" 50" 49" a (J2000)

T = 10- 20 K No enhanced heating at dense cores

Stellar heating is not enough to increase thermal $M_{\rm J}$

Wang, Zhang, et al. 2012

Polarization Map for G240

