ALMA Observations of the Large Magellanic Cloud: Molecular Filament Collisions Causing Massive Star Formation in N159 West

Isha Nayak

Margaret Meixner, M. Sewilo, R. Indebetouw, Y. Fukui, T. Onishi, L. Carlson

Paper: High-mass star formation triggered by collision between CO filaments in N159 West in the Large Magellanic Cloud (submitted)

Authors: Yasuo Fukui, Ryohei Harada, Kazuki Tokuda, Yuuki Morioka, Toshikazu Onishi, Kazufumi Torii, Akio Ohama, Omnarayani Nayak, Margaret Meixner, Marta Sewilo, Akiko Kawamura, Kazuya Saigo, Hiroaki Yamamoto, Kengo Tachihara, Tetsuhiro Minamidani, Tsuyoshi Inoue, Remy Indebetouw, Suzanna Madden, Maud Galametz, Vianney Lebouteiller, Norikazu Mizuno, Rosie Chen

March 20, 2015
Why Study the Large Magellanic Cloud?

- Distance ~ 50 kpc (one of the nearest)
- Face-on view
- Active Star Formation
 - Massive star formation
 - SAGE survey (Meixner et al. 2006) used to find YSOs
- Different environment than Milky Way
 - Low dust-to-gas ratio (1/3 of MW)
 - Low metallicity (0.5 solar)
 - SFR of 0.1 solar mass/year
- Unbiased Survey

Meixner et al. (2006)
R: MIPS 24, G: IRAC 8.0, B: IRAC 3.6
Why study the N159 GMC?

- One of the largest
 - Mass: \(10^5 M_{\text{sun}}\)
 - Size: \(220 \, pc^2\)
 - Strongest CO peak
 - Actively forming stars

![Map of N159 GMC with CO(J=1-0), CO(J=3-2), and CO(J=4-3) emissions with HPBW 45"

(MOPRA, ASTE, NANTEN)
HST versus. ALMA 13 CO (2-1): Filaments!

R: Spitzer 8 micron, G: HST F555W, B: 13CO(2-1)

HST PI: R. Indebetouw
ALMA PI: Y. Fukui
Filaments Revealed in ALMA 12 m Array 13CO (2-1)

White Crosses: YSOs (Chen et al. 2010)
Red Crosses: 1.3mm continuum peak

Beam Size: 1.1"
Formation of Massive Cores

- Filamentary collisions lead to massive star formation
First Extragalactic Outflows Detected

- Colliding Filaments
 - Velocity difference: 2-5 km/s
- Massive YSO in the center of collision
Fitting the SED to Derive Stellar Parameters of Stage 0/I YSOs

\[
\begin{align*}
YSO - N \\
M_{\text{star}} &= 33 \pm 5 \, M_{\odot} \\
t_{\text{star}} &= (40 \pm 4) \times 10^3 \, \text{yr}
\end{align*}
\]

\[
\begin{align*}
YSO - S \\
M_{\text{star}} &= 36 \pm 4 \, M_{\odot} \\
t_{\text{star}} &= (38 \pm 8) \times 10^3 \, \text{yr}
\end{align*}
\]

Photometry From: IRSF JHK, Spitzer IRAC, Spitzer MIPS, Herschel PACS, and Herschel SPIRE

Other photometric points extracted from Spitzer IRS spectrum

SED fitter by Robitaille et al. (2006, 2007)
YSO-N is More Evolved

- $N_e = 2.5 \times 10^3 \, cm^{-3}$
- $M_{ionized} = 350 \, M_{sun}$
- $EM = 6.3 \times 10^5 \, pc \, cm^{-6}$
- $U = 170 \times 10^3 \, pc \, cm^{-2}$
- $N_c = 1.5 \times 10^{50} \, s^{-1}$
- Spectral Type = O3
Conclusions

• We detect filaments
• Colliding filaments create massive stars
• We detect outflows associated with massive star formation for the first time outside our own Galaxy
• Difference between YSO-N and YSO-S shows evidence for evolution of environment
• Look for Fukui et al paper (coming soon)
• These are early results, more exciting things to come!
ALMA 12CO(2-1)

 Flux density (Jy km/s)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>196</td>
<td>48.4</td>
<td>65.8</td>
</tr>
<tr>
<td>B</td>
<td>785</td>
<td>151</td>
<td>168</td>
</tr>
</tbody>
</table>
ALMA 12m Array Image of 13CO(1-0)

Image made by: T. Onishi