ALMA Observations of the Large Magellanic Cloud: Molécular Filament Collisions Causing Massive Star Formation in N159 West

Isha Nayak

Margaret Meixner, M. Sewilo, R. Indebetouw, Y. Fukui, T. Onishipl. Carlson
Paper: High-mass star formation triggered by:colision between CO filaments in N 159 West in the Large Magellanic Cloud (súbmitted)

Authors: Yàsuo Fukui, Ryohei Harada; KảzukíTokuda, Yuuki Morioka, Toshikazu Onishi, Kazufumi Torii, Akio Ohama, Omnarayani Nayak, Margaret Meixner, Marta Sewilo, Akiko, Kawamura, Kazuya Saigo, Hiroaki Yamamoto, Kengo Tachihara, Tetsuhiro Minamidani, Tsuyoshi Inouie, Remy Inbedetouw, Suzanna Mảddèn, Maud Galametz, Vianney Lebouteiller, Nörikazu Mizuno, Rosie Chen

Why Study the Large Magellanic Cloud?

- Distance ~ 50 kpc (one of the nearest)
- Face-on view
- Active Star Formation
- Massive star formation
- SAGE survey (Meixner et al. 2006) used to find YSOs
- Different environment than Milky Way
- Low dust-to-gas ratio (1/3 of MW)
- Low metallicity (0.5 solar)
- SFR of 0.1 solar mass/year
- Unbiased Survey

Meixner et al. (2006)
R: MIPS 24, G: IRAC 8.0, B: IRAC 3.6

Why study the N159 GMC?

- One of the largest
- Mass: $10^{5} M_{\text {sun }}$
- Size: $220 p c^{2}$
- Strongest CO peak
- Actively forming stars

MOPRA	ASTE	NANTEN
$C O(J=1-0)$	$C O(J=3-2)$	$C O(J=4-3)$

HST versus. ALMA 13 CO (2-1): Filaments!

Filaments Revealed in ALMA 12 m Array 13CO (2-1)

Formation of Massive Cores

- Filamentary collisions lead to massive star formation

First Extragalactic Outflows Detected

- Colliding Filaments
- Velocity difference: $2-5 \mathrm{~km} / \mathrm{s}$
- Massive YSO in the center of collision

Fitting the SED to Derive Stellar Parameters of Stage 0/I YSOs

Photometry From : IRSF JHK, Spitzer IRAC, Spitzer MIPS, Herschel PACS, and Herschel SPIRE
Other photometric points extracted from Spitzer IRS spectrum SED fitter by Robitaille et al. $(2006,2007)$

YSO-N is More Evolved

- $\mathrm{Ne}=2.5 \times 10^{3} \mathrm{~cm}^{-3}$
- M (ionized) $=350 M_{\text {sun }}$
- $\mathrm{EM}=6.3 \times 10^{5}$ pc cm ${ }^{-6}$
- $\mathrm{U}=170 \times 10^{3} \mathrm{pccm}{ }^{-2}$
- $\mathrm{Nc}=1.5 \times 10^{50} \mathrm{~s}^{-1}$
- Spectral Type= O3

Evidence for Evolution of Environment

Conclusions

- We detect filaments
- Colliding filaments create massive stars
- We detect outflows associated with massive star formation for the first time outside our own Galaxy
- Difference between YSO-N and YSO-S shows evidence for evolution of environment
- Look for Fukui et al paper (coming soon)
- These are early results, more exciting things to come!

ALMA 12CO(2-1)

Color: 7m
Contour : 12m

Flux density (Jy km/s)

A	196	785
B	48.4	151
C	65.8	168

ALMA 12m Array Image of 13CO(1-0)

