

Molecular gas at ALMA resolution in the Magellanic Bridge

Mónica-Rubio Universidad de Chile

The Soul of High Mass Star Formation, Puerto Varas, 20 March 2015

Outline

- 1. Motivation
- 2. Dark molecular gas
- What we are learning from the submm emission of cold molecular gas in the Magellanic System

Collaborators: B Cornejo, A Rojas (DAS) A. Bolatto (U. Maryland, C. Verdugo, (Observatoire de Paris)

How can we measure H₂

- CO observations , X=N(H₂))/ICO
- Virial mass determination, DV and size (R)
- Emission from dust

Easy in the Galaxy and similar systems,

!!!Not the case elsewhere, low metallicity!!!!

WLM

Breaking the metallicity barrier for CO detections! 13% of Solar

Elmegreen, Rubio, Hunter, et al.2013 Nature 495,487

Conversion factor rises sharply at low metallicity. LEROY+ 11:

Points: Dust-driven solutions for the conversion factor in parts of Local Group galaxies

SMC and Magellanic Bridge

Low metallicity system

 $Z_{smc} = 0.1 \rightarrow 0.2$

C Abundance ~ 1/6 Gal O Abundance ~1/4 Gal • GDR ~ 1/10 Gal

and near

 $D_{smc} = 63 \text{ kpc}$

Submillimeter and FIR studies of the dust An alternative way to measure the dark molecular mass

Survey in the Magellanic Clouds

- SIMBA bolometer @ SEST (2000)
- SPITZER 3.6, 4.5, 5.8, 8.0, 24, 70, 160 μm
- HERSCHEL, 160,250, 300, 500 μm
- 0.850 mm LABOCA bolometer @APEX (2007)

Assuming a universal opacity of dust grain properties and knowing the gas-to-dust ratio I_{mm} -> $N(H_2)$

LABOCA/APEX observations in the Magellanic Clouds

15 regions :10'x10' to 20'x30' maps Res: 22" (~6 pc@SMC)

LMC 8 SMC 4 Mag Br 3

Total 29 sources

Before

Caroline Bot (France)

Cinthya Herrera (Chile) Viviana Guzman (Chile)

Celia Verdugo MSc Thesis, 2012 DAS, UCHILE

SMC and Magellanic Bridge

The Herschel Inventory of the Agents of Galaxy Evolution (Heritage) in the Magellanic Clouds

Meixner et al 2013

870 μm continuum emission with LABOCA

SMC-N83-N84

SMC-SW

SED fitting

Determine Temperature opacity and emissivity index β

SMC Submillimeter Excess

Verdugo et al 2014, Submitted

Submillimeter excess

Madden et al, Galametz et al 2011

Gordon et al 2009 GDR ~ 1200 +- 350

Magellanic Bridge Source A

FIG. 11.- SEDs for LMC sources with their corresponding residual plots.

MONICA RUBIO

2012.1.00683.S

PROJECT TITLE:	Sub-millimeter excess	in a low metallicity	cloud in the Magellanic	Bridge			
PRINCIPAL INVESTIGATOR NAME:	Monica RUBIO		PROJECT CODE:	ROJECT CODE:		2012.1.00683.S	
SCIENCE CATEGORY:	ISM, star formation and astrochemistry		ESTIMATED 12M TIME:	2.0 h	ESTIMATED ACA + TP TIME:	5.9 h	
CO-PI NAME(S): (Large Proposals only)							
CO-INVESTIGATOR NAME(S):	Alberto Bolatto; Celia V	/erdugo; Norikazu	Mizuno; Erik Muller				
EXECUTIVE SHARES[%]:	NA: EU:	0 0 0 100 0	STUDENT PR (Yes/No)	STUDENT PROJECT? (Yes/No)		No	
	EA: CL: OTHER:		RESUBMISSION? (Yes/No)		No		
		ABS	TRACT				
The Magellanic Bridge is neutral hydrogen (HI) lying nearest tidally interaction a lower metallicity than the conditions. Recent studies massive stars and CO mo	a filamentary structure of between the LMC and the between these two galax e SMC and therefore allo s have revealed the presen- lecular clouds. The latter	about 15 to 21 kp ne SMC. It represences ies some 200 Myr w to study the ISM ence of young (< 20 are barely resolved	c seen in nt the ago. It has I in extreme 00Myr) d in				

massive stars and CO molecular clouds. The latter are barely resolve	d in
single-dish observations and are spatially related to warm dust emis	sion
sources, as recently established by the Spitzer SMC-SAGE and Hersch	el HERITAGE
studies. We have obtained 870 micron images of one of these source	s, Magellanic
Bridge Source A. Surprisingly, its dust emission shows a large submi	llimeter
excess, indicative of either very cold dust or a dramatically different	
submillimeter emissivity. We propose to study this source in CO(1-0) and (2-1)
and the associated continuum at arcsecond resolution to determine	the physical
properties of the molecular cloud.	and the second sec

REPRESENTATIVE SCIENCE GOALS (UP TO FIRST 5)										
SCIENCE GOAL POSITION		FREQUENCY	BAND	ANG.RES.(")	ACA?					
CO 1-0	J2000: 01:43:53.0000, -74:32:26.000	115.20199 GHz	3	5.0	Y					
Continuum 1mm, CO 2-1	J2000: 01:43:53.0000, -74:32:26.000	217.26000 GHz	6	1.6	Y					

Magellanic Bridge A ALMA C1 1.3 mm continuum

N° antennas = 12

1.3mm res= 1.34"

Continuum rms = 5 mJy

CO (1-0) ang res= 2.0 " Vel res = 0.1 km/s

CO(2-1) Ang res -1.3 " Vel res= 0.5 km/s

Data delivered showed no continuum emission

Magellanic_Bridge_A ALMA C1 1.3 mm continnum

MagBridge: Continuo 1mm

Student: Byron Cornejo

Reducción usando Natural:

Reducción usando Briggs:

Magellanic Bridge A ALMA C1 1.3 mm continuum

S_1.3mm = 0.143+-0.007 Jy

→ M mm= 1.1 x10⁵ Mo

 $M_{co} = 1x10^{3} Mo$

X_co =7 X_gal. (Mizuno et al.2006) 2.6arcmin beam (50pc)

R~ 7 to 10 pc

 $M_{virial}_{CO_{alma}} = 8.2 \times 10^3 Mo$

Magellanic_Bridge_A ALMA C1 1.3 mm continnum

Rubio et al, In prep.

Results

- ALMA observation of the continuum dust emisssion confirms submillimeter excess

@ 1.2 mm excess is 5.7

@ 1.3 mm is 7.0

Larger excess as wavelength increases.

Caution to derive masses or $N(H_2)$ fr0m submm dust emission in these sytems

- The mass dust , M_mm $\sim 1.1 \times 10^5$ Mo

Assuming a gas to dust ratio scaling with metallicity and a dust emissivity with β =2

Larger than and larger that the mass derived from Nanten CO emission. And larger than mass from ALMA CO10 observations 8x10³ Mo

Important implications for star formation, star formation rates, etc.

Stay tuned!

