Starless Clumps through Protoclusters: Physical properties of clumps from the tBolocam,Galactic Plane Survey

Brián Svoboda (Arizona) Y. Shirley (Arízona)
E. Rosolowsky (Albeita)
T. Ellsworth-Bowers (Colorado)
M. Dunham (Yale)
A. Ginsburg (ESO)
M. Pestalozzi (Gothenburg)
J. Glenn (Colorado)
\& the BGPS Team

Starless Clump Candidates	
Protostellar Clumps	
HGG70 Uniq. : Hi-GAL 70 um Unique	
Mid. IR $\quad: 2-20$ um YSO	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{CH}_{3} \mathrm{OH} \quad:$ Water Maser	
UCHII $\quad:$ Methanol Maser	

Contamination Resampling Monte Carlo Random Sample $d \quad$ Heliocentric Distance PDF T_{K} $S_{1.1}, \Delta v, \theta_{\mathrm{eq}}, \ldots$

\downarrow
\square
Physical Properties: $M, \Sigma, R_{\text {eq }}, \alpha$,
Statistical Quantities : $\mu_{1 / 2}, \mu, \sigma$,

4683 clumps in survey overlap 2925 unique velocities 1462 GBT NH 3 gas kinetic temps. 1650 well-constrained distances

Starless Clump Candidates	
Protostellar Clumps	
HG70 Uniq. : Hi-GAL 70 um Unique	
Mid. IR	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{CH}_{3} \mathrm{OH}$	
UCHII	
UC	
: Water Maser	

Contamination Resampling
Monte Carlo Random Sample
Heliocentric Distance PDF
$T_{\mathrm{K}} \quad$ Observed OR Category PDF
Observed

Physical Properties : $M, \Sigma, R_{\text {eq }}, \alpha$,
Statistical Quantities : $\mu_{1 / 2}, \mu, \sigma$,

2237 (48\%) Starless Candidate
2446 (52\%) Protostellar
1043 (22\%) Hi-GAL Unique
70 um visual inspection
1022 (22\%) Mid. IR
Red MSX, EGO, Robitaille+08
461 (10\%) Water Maser GBT, Arcetri, HOPS
237 (5\%) Methanol Maser MMB, Arecibo, Pestalozzi+05
170 (4\%) UCHII CORNISH

Not an Evolutionary Sequence:

Sorted by more extreme indicator of star-formation activity.
Indicators are not Unique:
There exists significant overlap Between all individual indicators.

$\begin{aligned} & \text { on } \\ & \stackrel{\rightharpoonup}{3} \\ & \underset{ت}{7} \end{aligned}$	BGPS 1.1 mm Survey Data
	Bolocat Source Extraction
	Common Survey Overlap $10<l<65$

Starless Clump Candidates

Starless Clump Candidates	
Protostellar Clumps	
HG70 Uniq. : Hi-GAL 70 um Unique	
Mid. IR $\quad: 2-20$ um YSO	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{CH}_{3} \mathrm{OH} \quad$: Water Maser	
UCHII \quad : Ultra-Compact HII Reg.	

Physical Properties : $M, \Sigma, R_{\text {eq }}, \alpha$,
Statistical Quantities : $\mu_{1 / 2}, \mu, \sigma, \ldots$

Resample: 280 (6\%) R08 unique
AGB

YSO

Clump Distance PDF

 Monte Carlo simulations to calculate physical properties

[^0]Flux Density: Lower flux clumps more frequently starless, but Full and Distance samples similar.

Distance PDFs: Group distances are similar. Does not suggest strong distance bias.

Mass Segregation: Increase in median mass from 230 to 600 from Starless to Protostellar. Evidence for growth?

Cannot be due to:

- Mass incompleteness for starless candidates
- NH_{3} underestimate of TK
- Isothermal assumption
- Bias in distance or incomplete SF indicators

Explanations:

- Trend in dust opacity
- Decreasing lifetime of starless phase with mass
- Accretion onto clump from surrounding cloud: "mass conveyor belt"

Mass Growth: Accretion rate and total mass growth

 consistent with reasonable assumptions of GMC properties.

Clump : R ~ 1 pc
Feeding Zone : R ~ 1.5 pc

- Calculated free fall time is $\boldsymbol{\sim 0 . 3}$ Myr. Median mass difference of $\sim \mathbf{3 5 0} \mathbf{M}_{\text {sun }}$ implies $\sim 10^{-3}$ $\mathbf{M}_{\text {sun }} \mathrm{yr}^{-1}$, similar to that of a high-mass protostar.
- GMC gas velocities of $1.5 \mathrm{~km} \mathrm{~s}^{-1}$ suggest feeding zone of $\mathbf{0 . 5} \mathbf{~ p c}$ over 0.3 Myr, with ~500 $\mathbf{c m}^{-3}$ densities yields a mass reservoir of ~ 350 Msun

Virialized motions: No correlation in size-linewidth observed, but related by parametrization in Heyer+09. Median follows α of unity.

Monte Carlo simulations
create two dimensional distribution

Virialized motions: No correlation in size-linewidth observed, but related by parametrization in Heyer+09. Median follows α of unity.

Parametrization from Heyer+09, virial parameters of 2, 1, 0.5 overplotted with triangle for median from Solomen+82

In comparison, no correlation observed in size-linewidth

Summary and Conclusions

- We sort BGPS clumps by star-formation indicators, and with uniquevelocities, temperatures, and distances PDFs, we compute MC simulations of clump physical properties
- Sample of $\mathbf{\sim 2 2 0 0}$ starless clump candidates, the largest and most robust sample to date
- Consistent trends by indicator suggest that starless candidates are colder, lower column density, narrower linewidth, less concentrated, smaller, less dense, and less massive than active clumps
- Increase in median mass is suggestive of multiple explanations: cloud accretion, lifetime effects, and systematic biases in assumptions (beta, etc.)
- The majority (75\%) of clumps are gravitationally bound by having virial parameters less than two.

[^0]: Phys. \square
 Physical Properties : $M, \Sigma, R_{\text {eq }}, \alpha, \ldots$
 Statistical Quantities : $\mu_{1 / 2}, \mu, \sigma, \ldots$

