

The SCUBA-2 Ambitious Sky Survey

Mark Thompson, Gaius Manser, Larry Morgan, Andy Gibb, Tim Jenness, Douglas Scott, Stephen Serjeant on behalf of the SASSy Consortium

The SCUBA-2 Ambitious Sky Survey

Originally the "A" in SASSy stood for "All-Sky" but that turned out to be just a bit too ambitious...

SASSy is now targeted at a wide-area survey of the Outer Galaxy

Our aims remain the same:

- The widest area 850 µm survey carried out from the ground
- Pioneering continuum observations in weather grade 4
- Fully exploiting SCUBA-2's fast mapping capability
- Long wavelength counterpart to *Herschel* (cold, early stage objects "IRDCs")

http://www.eaobservatory.org/jcmt

Hi-GAL (70-500 μm)/ ATLASGAL (870 μm) 280 < I < 60, |b|~ 1

But then came Hi-GAL OT1...

SASSy rescoped to focus on Outer Galaxy & Hi-GAL OT1

However, then came HiGAL OT2 - aka 2pi-GAL - to fill in the gaps

So SASSy Perseus was born... (UK/Canada PI time project)

Hi-GAL (70-500 μm)/ ATLASGAL (870 μm) 280 < I < 60, |b|~ 1

But then came Hi-GAL OT1...

SASSy rescoped to focus on Outer Galaxy & Hi-GAL OT1

However, then came HiGAL OT2 - aka 2pi-GAL - to fill in the gaps

So SASSy Perseus was born... (UK/Canada PI time project)

Hi-GAL (70-500 μm)/ ATLASGAL (870 μm) 280 < I < 60, |b|~ 1

But then came Hi-GAL OT1...

SASSy rescoped to focus on Outer Galaxy & Hi-GAL OT1

However, then came HiGAL OT2 - aka 2pi-GAL - to fill in the gaps

So SASSy Perseus was born... (UK/Canada PI time project)

Hi-GAL (70-500 μm)/ ATLASGAL (870 μm) 280 < I < 60, |b|~ 1

But then came Hi-GAL OT1...

SASSy rescoped to focus on Outer Galaxy & Hi-GAL OT1

However, then came HiGAL OT2 - aka 2pi-GAL - to fill in the gaps

So SASSy Perseus was born... (UK/Canada PI time project)

SASSy-Perseus

Each survey tile is a 1 degree "pong"

Latitude extent is ~2.4°

Expand latitude coverage where needed, e.g. Cygnus-X

£70 t46 80 82 84 86 88 90 92 94 96 98

20

Galactic Latitude (degrees)

Galactic Longitude (degrees)

NGC7538 already covered in SV Campaign

100

SASSy-Outer Galaxy

Here the survey tiles are 2 degree "pongs"

Aim here was to maximise sky coverage to find rare objects

SASSy progress in a nutshell

Observations are now complete as of Jan 2015

SASSy-Perseus 100% complete from I=60 to I=120, |b| ~1.2

SASSy-OGF 97% complete from I=120-240 (a couple of tiles missing)

Target depths largely met for each tile (although some variations in SASSy-Perseus data)

Data reduction largely complete (>4TB raw data)

Preliminary source catalogue with ~2000 sources >5 σ

About 2/3 of these sources are "unknown to SIMBAD"

About 1/3 of these sources are in the Cygnus-X complex

Community data release coming later in the year

SASSy Science Verification: NGC 7538

The pre-SCUBA-2 view: SCUBA Legacy Catalogue (di Francesco et al 2008)

SASSy Science Verification: NGC 7538

The SCUBA-2 view: SASSy SV in late 2011

~15 hours of grade 4 time

rms noise ~25 mJy (with spatial filtering)

Calibration agrees with SCUBA Legacy Catalogue (caveats of chopping & baseline variations)

Filamentary structures clearly visible plus bright complexes not mapped by SCUBA

SASSy Science Verification: NGC 7538

The SCUBA-2 view: SASSy SV in late 2011 ~15 hours of grade 4 time rms noise ~25 mJy

(with spatial filtering)

Calibration agrees with SCUBA Legacy Catalogue (caveats of chopping & baseline variations)

Filamentary structures clearly visible plus bright complexes not mapped by SCUBA

Herschel/SASSy comparison NGC7538

Fallscheer et al 2013 HOBYS study

Reproduce all major structures with exception of diffuse cirrus

High pass filtering applied in SCUBA-2 data reduction removes structures >480"

Bayesian SED fitting

Developed pixel-pixel SED fitting code for Herschel & SCUBA-2 (Manser et al in prep)

Similar but different to Sadavoy et al 2013 (fully Bayesian, different filtering of *Herschel*)

Clear bias to warmer temperature from *Herschel* data alone

Improved angular resolution by including 850 μm instead of 500 μm

A gallery of SASSy blobs

Summary & the future

Survey observations fully complete as of Jan 2015

Data reduction largely complete

Survey data ready for imminent release to consortium

Envisage community release later in the year (6 months?)

SASSy-Perseus I=60-120 (Manser et al)

SASSy OGF-1 I=120-140 (Thompson et al, Nettke et al)

SASSy OGF-2 I=140-240

Comparison with the JSA

JCMT Science Archive early release planned this year of all nonproprietary data (includes some SCUBA-2 survey data)

JSA pipeline focused on source recovery, not imaging quality or photometric accuracy

SASSy release will supersede JSA in the archive

SASSy data reduction pipelines

Currently run two parallel data reduction pipelines:

- 1. Optimised for point-source sensitivity
 - Harsh filtering to reduce 1/f noise
 - Matched point-source filter
- 2. Optimised for extended-source sensitivity
 - Filtering at array scale (480")
 - FLT masking missing first few iterations
 - AST automasks on individual tiles

N7538 filament - structure vs sensitivity

Daisy followups of low SN sources

Snapshot daisies of 4-10 sigma sources (6 min daisy)

- Test completeness of source finder
- Uniform flux-limited catalogue

Results confirm 100% completeness at 4.6 sigma